12,485 research outputs found

    Increasing Distributed Generation Penetration using Soft Normally-Open Points

    No full text
    This paper considers the effects of various voltage control solutions on facilitating an increase in allowable levels of distributed generation installation before voltage violations occur. In particular, the voltage control solution that is focused on is the implementation of `soft' normally-open points (SNOPs), a term which refers to power electronic devices installed in place of a normally-open point in a medium-voltage distribution network which allows for control of real and reactive power flows between each end point of its installation sites. While other benefits of SNOP installation are discussed, the intent of this paper is to determine whether SNOPs are a viable alternative to other voltage control strategies for this particular application. As such, the SNOPs ability to affect the voltage profile along feeders within a distribution system is focused on with other voltage control options used for comparative purposes. Results from studies on multiple network models with varying topologies are presented and a case study which considers economic benefits of increasing feasible DG penetration is also given

    Chance-Constrained ADMM Approach for Decentralized Control of Distributed Energy Resources

    Full text link
    Distribution systems are undergoing a dramatic transition from a passive circuit that routinely disseminates electric power among downstream nodes to the system with distributed energy resources. The distributed energy resources come in a variety of technologies and typically include photovoltaic (PV) arrays, thermostatically controlled loads, energy storage units. Often these resources are interfaced with the system via inverters that can adjust active and reactive power injections, thus supporting the operational performance of the system. This paper designs a control policy for such inverters using the local power flow measurements. The control actuates active and reactive power injections of the inverter-based distributed energy resources. This strategy is then incorporated into a chance-constrained, decentralized optimal power flow formulation to maintain voltage levels and power flows within their limits and to mitigate the volatility of (PV) resources

    Options for Control of Reactive Power by Distributed Photovoltaic Generators

    Full text link
    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.Comment: 8 pages, 8 figure

    Can Distribution Grids Significantly Contribute to Transmission Grids' Voltage Management?

    Full text link
    Power generation in Germany is currently transitioning from a system based on large, central, thermal power plants to one that heavily relies on small, decentral, mostly renewable power generators. This development poses the question how transmission grids' reactive power demand for voltage management, covered by central power plants today, can be supplied in the future. In this work, we estimate the future technical potential of such an approach for the whole of Germany. For a 100% renewable electricity scenario we set the possible reactive power supply in comparison with the reactive power requirements that are needed to realize the simulated future transmission grid power flows. Since an exact calculation of distribution grids' reactive power potential is difficult due to the unavailability of detailed grid models on such scale, we optimistically estimate the potential by assuming a scaled, averaged distribution grid model connected to each of the transmission grid nodes. We find that for all except a few transmission grid nodes, the required reactive power can be fully supplied from the modeled distribution grids. This implies that - even if our estimate is overly optimistic - distributed reactive power provisioning will be a technical solution for many future reactive power challenges

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107
    corecore