362,450 research outputs found
Parametrization of a reactive force field for aluminum hydride
A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF_(AlH_3) is used to study the dynamics governing hydrogen desorption in AlH_3. During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF_(AlH_3). Results on heat of desorption versus cluster size show that there is a strong dependence of the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. In the gas phase, it was observed that small alane clusters agglomerated into a bigger cluster. After agglomeration molecular hydrogen was desorbed from the structure. This thermodynamically driven spontaneous agglomeration followed by desorption of molecular hydrogen provides a mechanism on how mobile alane clusters can facilitate the mass transport of aluminum atoms during the thermal decomposition of NaAlH_4
Thermal Decomposition of Hydrazines from Reactive Dynamics Using the ReaxFF Reactive Force Field
We report reactive dynamics (RD) studies on: the decomposition of bulk hydrazine (N_2H_4); the decomposition of bulk monomethyl-hydrazine (CH_3N_2H_3), hereafter referred to simply as methyl-hydrazine; the decomposition of hydrazine in the presence of hydrogen peroxide (H_2O_2); and decomposition hydrazine on catalytic surfaces Pt[100] and Pt[111] under various conditions. These studies use the ReaxFF reactive force field to describe the multitude of chemical reactions in these systems for a variety of reaction conditions in order to show that this approach leads to realistic decomposition mechanisms and rates. In particular, we determined how the decomposition of hydrazine is affected by temperature, pressure, and heating rate. We analyzed chemical reaction mechanism of the decomposition of hydrazine at the studied conditions and found that at lower temperatures the initial product from hydrazine decomposition is NH_3, whereas at higher temperatures H_2 and N_2 are the dominant early products. Prominent intermediates observed during these decompositions include N_2H_3, N_2H_2, and NH_2, in agreement with quantum mechanical studies (7.3 ps at 3000 K). As the heating rate is decreased, the onset for hydrazine decomposition shifts to lower temperatures. Using a constant heating rate, we found that higher pressure (increased density) favors formation of NH_3 over N_2 and H_2. In studies of the catalytic decomposition of hydrazine on surfaces Pt[100] and Pt[111], we found that the presence of a Pt-catalyst reduces the initial decomposition temperature of hydrazine by about 50%. We found that the Pt[100]-surface is 20 times more active for hydrazine decomposition than the Pt[111]-surface, in qualitative agreement with experiments. These studies indicate how ReaxFF RD can be useful in understanding the chemical processes involved in bulk and catalytic decomposition and in oxidation of reactive species under various reaction conditions
Development and Validation of a ReaxFF Reactive Force Field for Cu Cation/Water Interactions and Copper Metal/Metal Oxide/Metal Hydroxide Condensed Phases
To enable large-scale reactive dynamic simulations of copper oxide/water and copper ion/water interactions we have extended the ReaxFF reactive force field framework to Cu/O/H interactions. To this end, we employed a multistage force field development strategy, where the initial training set (containing metal/metal oxide/metal hydroxide condensed phase data and [Cu(H_2O)_n]^(2+) cluster structures and energies) is augmented by single-point quantum mechanices (QM) energies from [Cu(H_2O)_n]^(2+) clusters abstracted from a ReaxFF molecular dynamics simulation. This provides a convenient strategy to both enrich the training set and to validate the final force field. To further validate the force field description we performed molecular dynamics simulations on Cu^(2+)/water systems. We found good agreement between our results and earlier experimental and QM-based molecular dynamics work for the average Cu/water coordination, Jahn−Teller distortion, and inversion in [Cu(H_2O)_6]^(2+) clusters and first- and second-shell O−Cu−O angular distributions, indicating that this force field gives a satisfactory description of the Cu-cation/water interactions. We believe that this force field provides a computationally convenient method for studying the solution and surface chemistry of metal cations and metal oxides and, as such, has applications for studying protein/metal cation complexes, pH-dependent crystal growth/dissolution, and surface catalysis
Modeling the sorption dynamics of NaH using a reactive force field
We have parametrized a reactive force field for NaH, ReaxFFNaH, against a training set of ab initio derived data. To ascertain that ReaxFFNaH is properly parametrized, a comparison between ab initio heats of formation of small representative NaH clusters with ReaxFFNaH was done. The results and trend of ReaxFFNaH are found to be consistent with ab initio values. Further validation includes comparing the equations of state of condensed phases of Na and NaH as calculated from ab initio and ReaxFFNaH. There is a good match between the two results, showing that ReaxFFNaH is correctly parametrized by the ab initio training set. ReaxFFNaH has been used to study the dynamics of hydrogen desorption in NaH particles. We find that ReaxFFNaH properly describes the surface molecular hydrogen charge transfer during the abstraction process. Results on heat of desorption versus cluster size shows that there is a strong dependence on the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. To gain more insight into the structural transformations of NaH during thermal decomposition, we performed a heating run in a molecular dynamics simulation. These runs exhibit a series of drops in potential energy, associated with cluster fragmentation and desorption of molecular hydrogen. This is consistent with experimental evidence that NaH dissociates at its melting point into smaller fragments
Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH
Parameterization of a reactive force field for NaH is done using ab initio derived data. The parameterized force field(ReaxFFNaH) is used to study the dynamics governing hydrogen desorption in NaH. During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by the parameterized force field. To gain more insight into the mechanism governing structural transformation of NaH during thermal decomposition a heating run in a molecular dynamics simulation is done. The result shows that a clear signature of hydrogen desorption is the fall in potential energy surface during heating
The ReaxFF reactive force-field : development, applications and future directions
The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFF method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. This article provides an overview of the development, application, and future directions of the ReaxFF method
Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field
Pyrolysis of phenolic resins leads to carbon formation. Simulating this resin-to-carbon process atomistically is a daunting task. In this paper, we attempt to model the initial stage of this process by using the ReaxFF reactive force field, which bridges quantum mechanical and molecular mechanical methods. We run molecular dynamics simulations to examine the evolution of small molecules at different temperatures. The main small-molecule products found include H_2O, H_2, CO, and C_2H_2. We find multiple pathways leading to H_2O formation, including a frequent channel via β-H elimination, which has not been proposed before. We determine the reaction barrier for H_2O formation from the reaction rates obtained at different temperatures. We also discuss the relevance of our simulations to previous experimental observations. This work represents a first attempt to model the resin-to-carbon process atomistically
Energetic Materials at High Compression: First-Principles Density Functional Theory and Reactive Force Field Studies
We report the results of a comparative study of pentaerythritol tetranitrate (PETN) at high compression using classical reactive interatomic potential ReaxFF and first-principles density functional theory (DFT). Lattice parameters of PETN I, the ground state structure at ambient conditions, is obtained by ReaxFF and two different density functional methods (plane wave and LCAO pseudopotential methods) and compared with experiment. Calculated energetics and isothermal equation of state (EOS) upon hydrostatic compression obtained by DFT and ReaxFF are both in good agreement with available experimental data. Our calculations of the hydrostatic EOS at zero temperature are extended to high pressures up to 50 GPa. The anisotropic characteristics of PETN upon uniaxial compression were also calculated by both ReaxFF and DFT
- …
