1,920,112 research outputs found
Reactive Hall response
The zero temperature Hall constant R_H, described by reactive
(nondissipative) conductivities, is analyzed within linear response theory. It
is found that in a certain limit, R_H is directly related to the density
dependence of the Drude weight implying a simple picture for the change of sign
of charge carriers in the vicinity of a Mott-Hubbard transition. This novel
formulation is applied to the calculation of R_H in quasi-one dimensional and
ladder prototype interacting electron systems.Comment: 4 pages, 3 Postscript figure
The Reactive Volatility Model
We present a new volatility model, simple to implement, that includes a
leverage effect whose return-volatility correlation function fits to empirical
observations. This model is able to capture both the "retarded effect" induced
by the specific risk, and the "panic effect", which occurs whenever systematic
risk becomes the dominant factor. Consequently, in contrast to a GARCH model
and a standard volatility estimate from the squared returns, this new model is
as reactive as the implied volatility: the model adjusts itself in an
instantaneous way to each variation of the single stock price or the stock
index price and the adjustment is highly correlated to implied volatility
changes. We also test the reactivity of our model using extreme events taken
from the 470 most liquid European stocks over the last decade. We show that the
reactive volatility model is more robust to extreme events, and it allows for
the identification of precursors and replicas of extreme events
Efficient Reactive Brownian Dynamics
We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle
simulations of reaction-diffusion systems based on the Doi or volume reactivity
model, in which pairs of particles react with a specified Poisson rate if they
are closer than a chosen reactive distance. In our Doi model, we ensure that
the microscopic reaction rules for various association and disassociation
reactions are consistent with detailed balance (time reversibility) at
thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to
separate reaction and diffusion, and solves both the diffusion-only and
reaction-only subproblems exactly, even at high packing densities. To
efficiently process reactions without uncontrolled approximations, SRBD employs
an event-driven algorithm that processes reactions in a time-ordered sequence
over the duration of the time step. A grid of cells with size larger than all
of the reactive distances is used to schedule and process the reactions, but
unlike traditional grid-based methods such as Reaction-Diffusion Master
Equation (RDME) algorithms, the results of SRBD are statistically independent
of the size of the grid used to accelerate the processing of reactions. We use
the SRBD algorithm to compute the effective macroscopic reaction rate for both
reaction- and diffusion-limited irreversible association in three dimensions.
We also study long-time tails in the time correlation functions for reversible
association at thermodynamic equilibrium. Finally, we compare different
particle and continuum methods on a model exhibiting a Turing-like instability
and pattern formation. We find that for models in which particles diffuse off
lattice, such as the Doi model, reactions lead to a spurious enhancement of the
effective diffusion coefficients.Comment: To appear in J. Chem. Phy
Synthesizing Functional Reactive Programs
Functional Reactive Programming (FRP) is a paradigm that has simplified the
construction of reactive programs. There are many libraries that implement
incarnations of FRP, using abstractions such as Applicative, Monads, and
Arrows. However, finding a good control flow, that correctly manages state and
switches behaviors at the right times, still poses a major challenge to
developers. An attractive alternative is specifying the behavior instead of
programming it, as made possible by the recently developed logic: Temporal
Stream Logic (TSL). However, it has not been explored so far how Control Flow
Models (CFMs), as synthesized from TSL specifications, can be turned into
executable code that is compatible with libraries building on FRP. We bridge
this gap, by showing that CFMs are indeed a suitable formalism to be turned
into Applicative, Monadic, and Arrowized FRP. We demonstrate the effectiveness
of our translations on a real-world kitchen timer application, which we
translate to a desktop application using the Arrowized FRP library Yampa, a web
application using the Monadic threepenny-gui library, and to hardware using the
Applicative hardware description language ClaSH.Comment: arXiv admin note: text overlap with arXiv:1712.0024
Can Distribution Grids Significantly Contribute to Transmission Grids' Voltage Management?
Power generation in Germany is currently transitioning from a system based on
large, central, thermal power plants to one that heavily relies on small,
decentral, mostly renewable power generators. This development poses the
question how transmission grids' reactive power demand for voltage management,
covered by central power plants today, can be supplied in the future.
In this work, we estimate the future technical potential of such an approach
for the whole of Germany. For a 100% renewable electricity scenario we set the
possible reactive power supply in comparison with the reactive power
requirements that are needed to realize the simulated future transmission grid
power flows. Since an exact calculation of distribution grids' reactive power
potential is difficult due to the unavailability of detailed grid models on
such scale, we optimistically estimate the potential by assuming a scaled,
averaged distribution grid model connected to each of the transmission grid
nodes.
We find that for all except a few transmission grid nodes, the required
reactive power can be fully supplied from the modeled distribution grids. This
implies that - even if our estimate is overly optimistic - distributed reactive
power provisioning will be a technical solution for many future reactive power
challenges
Lattice Gas Automata for Reactive Systems
Reactive lattice gas automata provide a microscopic approachto the dynamics
of spatially-distributed reacting systems. After introducing the subject within
the wider framework of lattice gas automata (LGA) as a microscopic approach to
the phenomenology of macroscopic systems, we describe the reactive LGA in terms
of a simple physical picture to show how an automaton can be constructed to
capture the essentials of a reactive molecular dynamics scheme. The statistical
mechanical theory of the automaton is then developed for diffusive transport
and for reactive processes, and a general algorithm is presented for reactive
LGA. The method is illustrated by considering applications to bistable and
excitable media, oscillatory behavior in reactive systems, chemical chaos and
pattern formation triggered by Turing bifurcations. The reactive lattice gas
scheme is contrasted with related cellular automaton methods and the paper
concludes with a discussion of future perspectives.Comment: to appear in PHYSICS REPORTS, 81 revtex pages; uuencoded gziped
postscript file; figures available from [email protected] or
[email protected]
Reactive Systems over Cospans
The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of well-behaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimits (or, more usually and generally, bicolimits) which need to be constructed separately within each model. In this paper, we offer a general construction of such bicolimits in a class of bicategories of cospans. The construction sheds light on as well as extends Ehrig and Konig’s rewriting via borrowed contexts and opens the way to a unified treatment of several applications
- …
