243,264 research outputs found
Confirming the existence of π-allyl-palladium intermediates during the reaction of meta photocycloadducts with palladium(ii) compounds
The transient existence of π-allyl-palladium intermediates formed by the reaction of Pd(OAc)2 and anisole-derived meta photocycloadducts has been demonstrated using NMR techniques. The intermediates tended to be short-lived and underwent rapid reductive elimination of palladium metal to form allylic acetates, however this degradation process could be delayed by changing the reaction solvent from acetonitrile to chloroform
Heuristics-Guided Exploration of Reaction Mechanisms
For the investigation of chemical reaction networks, the efficient and
accurate determination of all relevant intermediates and elementary reactions
is mandatory. The complexity of such a network may grow rapidly, in particular
if reactive species are involved that might cause a myriad of side reactions.
Without automation, a complete investigation of complex reaction mechanisms is
tedious and possibly unfeasible. Therefore, only the expected dominant reaction
paths of a chemical reaction network (e.g., a catalytic cycle or an enzymatic
cascade) are usually explored in practice. Here, we present a computational
protocol that constructs such networks in a parallelized and automated manner.
Molecular structures of reactive complexes are generated based on heuristic
rules derived from conceptual electronic-structure theory and subsequently
optimized by quantum chemical methods to produce stable intermediates of an
emerging reaction network. Pairs of intermediates in this network that might be
related by an elementary reaction according to some structural similarity
measure are then automatically detected and subjected to an automated search
for the connecting transition state. The results are visualized as an
automatically generated network graph, from which a comprehensive picture of
the mechanism of a complex chemical process can be obtained that greatly
facilitates the analysis of the whole network. We apply our protocol to the
Schrock dinitrogen-fixation catalyst to study alternative pathways of catalytic
ammonia production.Comment: 27 pages, 9 figure
4,5,12,13-Tetrabromo[2.2]paracyclophane - A New Bis(aryne) Equivalent
The reaction of 2 with nBuLi at -78°C generates aryne intermediates within the aromatic rings of [2.2]paracyclophane which are trapped in Diels-Alder reactions with dienes like furan, 1,9-diphenylisobenzofuran, or cyclopentadiene. Reductive deoxygenation with low-valent titanium reagents or TMSI converts the adducts of furan and isobenzofuran into anti-[2.2]paracyclophanes 4 and 5, respectively. The reaction of two aryne intermediates with [2.2](2,5)furanophane (7) yields 8 with three [2.2]paracyclophane units arranged in a stair-like fashion; yet, in this compound the highly shielded oxygen atoms cannot be removed anymore by reduction
Selecting between two transition states by which water oxidation intermediates on an oxide surface decay
While catalytic mechanisms on electrode surfaces have been proposed for
decades, the pathways by which the product's chemical bonds evolve from the
initial charge-trapping intermediates have not been resolved in time. Here, we
discover a reactive population of charge-trapping intermediates with states in
the middle of a semiconductor's band-gap to reveal the dynamics of two parallel
transition state pathways for their decay. Upon photo-triggering the water
oxidation reaction from the n-SrTiO3 surface with band-gap, pulsed excitation,
the intermediates' microsecond decay reflects transition state theory (TST)
through: (1) two distinct and reaction dependent (pH, T, Ionic Strength, and
H/D exchange) time constants, (2) a primary kinetic salt effect on each
activation barrier and an H/D kinetic isotope effect on one, and (3) realistic
activation barrier heights (0.4 - 0.5 eV) and TST pre-factors (10^11 - 10^12
Hz). A photoluminescence from midgap states in n-SrTiO3 reveals the reaction
dependent decay; the same spectrum was previously assigned by us to
hole-trapping at parallel Ti-O(dot)-Ti (bridge) and perpendicular Ti-O(dot)
(oxyl) O-sites using in situ ultrafast vibrational and optical spectroscopy.
Therefore, the two transition states are naturally associated with the decay of
these respective intermediates. Furthermore, we show that reaction conditions
select between the two pathways, one of which reflects a labile intermediate
facing the electrolyte (the oxyl) and the other a lattice oxygen (the bridge).
Altogether, we experimentally isolate an important activation barrier for water
oxidation, which is necessary for designing water oxidation catalysts with high
O2 turn over. Moreover, in isolating it, we identify competing mechanisms for
O2 evolution at surfaces and show how to use reaction conditions to select
between them
Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural
This review appraises the chemical conversion processes recently reported for the production of
hydroxylmethylfurfural (HMF), a key biorefining intermediate, from carbohydrate biomass
feedstocks. Catalytic sites or groups required for the efficient and selective conversion of hexose
substrates to HMF are examined. The principle of concerted catalysis was used to rationalise the
dehydration of fructose and glucose to HMF in non-aqueous media. A survey of reported reaction
routes to diesel-range biofuel intermediates from HMF or furfural is presented and self-condensation
reaction routes for linking two or more HMF and furfural units together toward obtaining kerosene and diesel-range biofuel intermediates are highlighted. The reaction routes include: benzoin condensation, condensation of furfuryl alcohols, hetero Diels–Alder reaction and ketonisation
reaction. These reaction routes are yet to be exploited despite their potential for obtaining kerosene and diesel-range biofuel intermediates exclusively from furfural or hydroxylmethylfurfural
Direct measurements of DOCO isomers in the kinetics of OD+CO
Quantitative and mechanistically-detailed kinetics of the reaction of
hydroxyl radical (OH) with carbon monoxide (CO) have been a longstanding goal
of contemporary chemical kinetics. This fundamental prototype reaction plays an
important role in atmospheric and combustion chemistry, motivating studies for
accurate determination of the reaction rate coefficient and its pressure and
temperature dependence at thermal reaction conditions. This intricate
dependence can be traced directly to details of the underlying dynamics
(formation, isomerization, and dissociation) involving the reactive
intermediates cis- and trans-HOCO, which can only be observed transiently.
Using time-resolved frequency comb spectroscopy, comprehensive mechanistic
elucidation of the kinetics of the isotopic analogue deuteroxyl radical (OD)
with CO has been realized. By monitoring the concentrations of reactants,
intermediates, and products in real-time, the branching and isomerization
kinetics and absolute yields of all species in the OD+CO reaction are
quantified as a function of pressure and collision partner.Comment: 19 pages, 4 figure
Total syntheses of conformationally-locked difluorinated pentopyranose analogues and a pentopyranosyl phosphate mimetic
Trifluoroethanol has been elaborated, via a telescoped sequence involving a metalated difluoroenol, a difluoroallylic alcohol, [2,3]-Wittig rearrangement, and ultimately an RCM reaction and requiring minimal intermediate purification, to a number of cyclooctenone intermediates. Epoxidation of these intermediates followed by transannular ring opening or dihydroxylation, then transannular hemiacetalization delivers novel bicyclic analogues of pentopyranoses, which were elaborated (in one case) to an analogue of a glycosyl phosphate
Enhanced selectivity in the conversion of methanol to 2,2,3-trimethylbutane (triptane) over zinc iodide by added phosphorous or hypophosphorous acid
The yield of triptane from the reaction of methanol with zinc iodide is dramatically increased by addition of phosphorous or hypophosphorous acid, via transfer of hydride from a P–H bond to carbocationic intermediates
ECUT: Energy Conversion and Utilization Technologies program. Heterogeneous catalysis modeling program concept
Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability
An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates
The CO_{2} electro-reduction reaction (CORR) is a promising avenue to convert
greenhouse gases into high-value fuels and chemicals, in addition to being an
attractive method for storing intermittent renewable energy. Although
polycrystalline Cu surfaces have long known to be unique in their capabilities
of catalyzing the conversion of CO_{2} to higher-order C1 and C2 fuels, such as
hydrocarbons (CH_{4}, C_{2}H_{4} etc.) and alcohols (CH_{3}OH, C_{2}H_{5}OH),
product selectivity remains a challenge. In this study, we select three metal
catalysts (Pt, Au, Cu) and apply in situ surface enhanced infrared absorption
spectroscopy (SEIRAS) and ambient-pressure X-ray photoelectron spectroscopy
(APXPS), coupled to density-functional theory (DFT) calculations, to get
insight into the reaction pathway for the CORR. We present a comprehensive
reaction mechanism for the CORR, and show that the preferential reaction
pathway can be rationalized in terms of metal-carbon (M-C) and metal-oxygen
(M-O) affinity. We show that the final products are determined by the
configuration of the initial intermediates, C-bound and O-bound, which can be
obtained from CO_{2} and (H)CO_{3}, respectively. C1 hydrocarbons are produced
via OCH_{3, ad} intermediates obtained from O-bound CO_{3, ad} and require a
catalyst with relatively high affinity for O-bound intermediates. Additionally,
C2 hydrocarbon formation is suggested to result from the C-C coupling between
C-bound CO_{ad} and (H)CO_{ad}, which requires an optimal affinity for the
C-bound species, so that (H)CO_{ad} can be further reduced without poisoning
the catalyst surface. Our findings pave the way towards a design strategy for
CORR catalysts with improved selectivity, based on this
experimental/theoretical reaction mechanisms that have been identified
- …
