15,338 research outputs found

    Biochemical Reaction Rules with Constraints

    Get PDF
    International audienceWe propose React(C), an expressive programming language for stochastic modeling and simulation in systems biology, that is based on biochemical reactions with constraints. We prove that React(C) can express the stochastic pi-calculus, in contrast to previous rule-based programming languages, and further illustrate the high expressiveness of React(C). We present a stochastic simulator for React(C) independently of the choice of the constraint language C. Our simulator must decide for a given reaction rule whether it can be applied to the current biochemical solution. We show that this decision problem is NP-complete for arbitrary constraint systems C, and that it can be solved in polynomial time for rules of bounded arity. In practice, we propose to solve this problem by constraint programming

    Process algebra modelling styles for biomolecular processes

    Get PDF
    We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed

    Compositionality, stochasticity and cooperativity in dynamic models of gene regulation

    Full text link
    We present an approach for constructing dynamic models for the simulation of gene regulatory networks from simple computational elements. Each element is called a ``gene gate'' and defines an input/output-relationship corresponding to the binding and production of transcription factors. The proposed reaction kinetics of the gene gates can be mapped onto stochastic processes and the standard ode-description. While the ode-approach requires fixing the system's topology before its correct implementation, expressing them in stochastic pi-calculus leads to a fully compositional scheme: network elements become autonomous and only the input/output relationships fix their wiring. The modularity of our approach allows to pass easily from a basic first-level description to refined models which capture more details of the biological system. As an illustrative application we present the stochastic repressilator, an artificial cellular clock, which oscillates readily without any cooperative effects.Comment: 15 pages, 8 figures. Accepted by the HFSP journal (13/09/07

    Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative

    Full text link
    This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized Riemann-Liouville fractional derivative defined in Hilfer et al. , and the space derivative of second order by the Riesz-Feller fractional derivative, and adding a function Ï•(x,t)\phi(x,t). The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of Mittag-Leffler functions. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al., and the result very recently given by Tomovski et al.. At the end, extensions of the derived results, associated with a finite number of Riesz-Feller space fractional derivatives, are also investigated.Comment: 15 pages, LaTe
    • …
    corecore