1,997 research outputs found

    Reachability in Higher-Order-Counters

    Full text link
    Higher-order counter automata (\HOCS) can be either seen as a restriction of higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of \HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level kk \HOCS with 00-test is complete for \mbox{(k2)(k-2)}-fold exponential space; leaving out the 00-test leads to completeness for \mbox{(k2)(k-2)}-fold exponential time. Restricting \HOCS (without 00-test) to level 22, we prove that global (forward or backward) reachability analysis is \PTIME-complete. This enhances the known result for pushdown systems which are subsumed by level 22 \HOCS without 00-test. We transfer our results to the formal language setting. Assuming that \PTIME \subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201

    Dense-choice Counter Machines revisited

    Full text link
    This paper clarifies the picture about Dense-choice Counter Machines, which have been less studied than (discrete) Counter Machines. We revisit the definition of "Dense Counter Machines" so that it now extends (discrete) Counter Machines, and we provide new undecidability and decidability results. Using the first-order additive mixed theory of reals and integers, we give a logical characterization of the sets of configurations reachable by reversal-bounded Dense-choice Counter Machines

    Model checking Branching-Time Properties of Multi-Pushdown Systems is Hard

    Full text link
    We address the model checking problem for shared memory concurrent programs modeled as multi-pushdown systems. We consider here boolean programs with a finite number of threads and recursive procedures. It is well-known that the model checking problem is undecidable for this class of programs. In this paper, we investigate the decidability and the complexity of this problem under the assumption of bounded context-switching defined by Qadeer and Rehof, and of phase-boundedness proposed by La Torre et al. On the model checking of such systems against temporal logics and in particular branching time logics such as the modal μ\mu-calculus or CTL has received little attention. It is known that parity games, which are closely related to the modal μ\mu-calculus, are decidable for the class of bounded-phase systems (and hence for bounded-context switching as well), but with non-elementary complexity (Seth). A natural question is whether this high complexity is inevitable and what are the ways to get around it. This paper addresses these questions and unfortunately, and somewhat surprisingly, it shows that branching model checking for MPDSs is inherently an hard problem with no easy solution. We show that parity games on MPDS under phase-bounding restriction is non-elementary. Our main result shows that model checking a kk context bounded MPDS against a simple fragment of CTL, consisting of formulas that whose temporal operators come from the set {\EF, \EX}, has a non-elementary lower bound

    Weak Singular Hybrid Automata

    Full text link
    The framework of Hybrid automata, introduced by Alur, Courcourbetis, Henzinger, and Ho, provides a formal modeling and analysis environment to analyze the interaction between the discrete and the continuous parts of cyber-physical systems. Hybrid automata can be considered as generalizations of finite state automata augmented with a finite set of real-valued variables whose dynamics in each state is governed by a system of ordinary differential equations. Moreover, the discrete transitions of hybrid automata are guarded by constraints over the values of these real-valued variables, and enable discontinuous jumps in the evolution of these variables. Singular hybrid automata are a subclass of hybrid automata where dynamics is specified by state-dependent constant vectors. Henzinger, Kopke, Puri, and Varaiya showed that for even very restricted subclasses of singular hybrid automata, the fundamental verification questions, like reachability and schedulability, are undecidable. In this paper we present \emph{weak singular hybrid automata} (WSHA), a previously unexplored subclass of singular hybrid automata, and show the decidability (and the exact complexity) of various verification questions for this class including reachability (NP-Complete) and LTL model-checking (PSPACE-Complete). We further show that extending WSHA with a single unrestricted clock or extending WSHA with unrestricted variable updates lead to undecidability of reachability problem

    FO2(<,+1,~) on data trees, data tree automata and branching vector addition systems

    Get PDF
    A data tree is an unranked ordered tree where each node carries a label from a finite alphabet and a datum from some infinite domain. We consider the two variable first order logic FO2(<,+1,~) over data trees. Here +1 refers to the child and the next sibling relations while < refers to the descendant and following sibling relations. Moreover, ~ is a binary predicate testing data equality. We exhibit an automata model, denoted DAD# that is more expressive than FO2(<,+1,~) but such that emptiness of DAD# and satisfiability of FO2(<,+1,~) are inter-reducible. This is proved via a model of counter tree automata, denoted EBVASS, that extends Branching Vector Addition Systems with States (BVASS) with extra features for merging counters. We show that, as decision problems, reachability for EBVASS, satisfiability of FO2(<,+1,~) and emptiness of DAD# are equivalent

    The Reach-Avoid Problem for Constant-Rate Multi-Mode Systems

    Full text link
    A constant-rate multi-mode system is a hybrid system that can switch freely among a finite set of modes, and whose dynamics is specified by a finite number of real-valued variables with mode-dependent constant rates. Alur, Wojtczak, and Trivedi have shown that reachability problems for constant-rate multi-mode systems for open and convex safety sets can be solved in polynomial time. In this paper, we study the reachability problem for non-convex state spaces and show that this problem is in general undecidable. We recover decidability by making certain assumptions about the safety set. We present a new algorithm to solve this problem and compare its performance with the popular sampling based algorithm rapidly-exploring random tree (RRT) as implemented in the Open Motion Planning Library (OMPL).Comment: 26 page
    corecore