2 research outputs found

    Re-balancing Variational Autoencoder Loss for Molecule Sequence Generation

    Full text link
    Molecule generation is to design new molecules with specific chemical properties and further to optimize the desired chemical properties. Following previous work, we encode molecules into continuous vectors in the latent space and then decode the vectors into molecules under the variational autoencoder (VAE) framework. We investigate the posterior collapse problem of current RNN-based VAEs for molecule sequence generation. For the first time, we find that underestimated reconstruction loss leads to posterior collapse, and provide both theoretical and experimental evidence. We propose an effective and efficient solution to fix the problem and avoid posterior collapse. Without bells and whistles, our method achieves SOTA reconstruction accuracy and competitive validity on the ZINC 250K dataset. When generating 10,000 unique valid SMILES from random prior sampling, it costs JT-VAE1450s while our method only needs 9s. Our implementation is at https://github.com/chaoyan1037/Re-balanced-VAE.Comment: 8 page

    Deep Evolutionary Learning for Molecular Design

    Full text link
    In this paper, we propose a deep evolutionary learning (DEL) process that integrates fragment-based deep generative model and multi-objective evolutionary computation for molecular design. Our approach enables (1) evolutionary operations in the latent space of the generative model, rather than the structural space, to generate novel promising molecular structures for the next evolutionary generation, and (2) generative model fine-tuning using newly generated high-quality samples. Thus, DEL implements a data-model co-evolution concept which improves both sample population and generative model learning. Experiments on two public datasets indicate that sample population obtained by DEL exhibits improved property distributions, and dominates samples generated by multi-objective Bayesian optimization algorithms
    corecore