684 research outputs found

    Cluster-wise Unsupervised Hashing for Cross-Modal Similarity Search

    Full text link
    Large-scale cross-modal hashing similarity retrieval has attracted more and more attention in modern search applications such as search engines and autopilot, showing great superiority in computation and storage. However, current unsupervised cross-modal hashing methods still have some limitations: (1)many methods relax the discrete constraints to solve the optimization objective which may significantly degrade the retrieval performance;(2)most existing hashing model project heterogenous data into a common latent space, which may always lose sight of diversity in heterogenous data;(3)transforming real-valued data point to binary codes always results in abundant loss of information, producing the suboptimal continuous latent space. To overcome above problems, in this paper, a novel Cluster-wise Unsupervised Hashing (CUH) method is proposed. Specifically, CUH jointly performs the multi-view clustering that projects the original data points from different modalities into its own low-dimensional latent semantic space and finds the cluster centroid points and the common clustering indicators in its own low-dimensional space, and learns the compact hash codes and the corresponding linear hash functions. An discrete optimization framework is developed to learn the unified binary codes across modalities under the guidance cluster-wise code-prototypes. The reasonableness and effectiveness of CUH is well demonstrated by comprehensive experiments on diverse benchmark datasets.Comment: 13 pages, 26 figure

    Jointly Deep Multi-View Learning for Clustering Analysis

    Full text link
    In this paper, we propose a novel Joint framework for Deep Multi-view Clustering (DMJC), where multiple deep embedded features, multi-view fusion mechanism and clustering assignments can be learned simultaneously. Our key idea is that the joint learning strategy can sufficiently exploit clustering-friendly multi-view features and useful multi-view complementary information to improve the clustering performance. How to realize the multi-view fusion in such a joint framework is the primary challenge. To do so, we design two ingenious variants of deep multi-view joint clustering models under the proposed framework, where multi-view fusion is implemented by two different schemes. The first model, called DMJC-S, performs multi-view fusion in an implicit way via a novel multi-view soft assignment distribution. The second model, termed DMJC-T, defines a novel multi-view auxiliary target distribution to conduct the multi-view fusion explicitly. Both DMJC-S and DMJC-T are optimized under a KL divergence like clustering objective. Experiments on six challenging image datasets demonstrate the superiority of both DMJC-S and DMJC-T over single/multi-view baselines and the state-of-the-art multiview clustering methods, which proves the effectiveness of the proposed DMJC framework. To our best knowledge, this is the first work to model the multi-view clustering in a deep joint framework, which will provide a meaningful thinking in unsupervised multi-view learning.Comment: 10 pages, 4 figure

    Robust Localized Multi-view Subspace Clustering

    Full text link
    In multi-view clustering, different views may have different confidence levels when learning a consensus representation. Existing methods usually address this by assigning distinctive weights to different views. However, due to noisy nature of real-world applications, the confidence levels of samples in the same view may also vary. Thus considering a unified weight for a view may lead to suboptimal solutions. In this paper, we propose a novel localized multi-view subspace clustering model that considers the confidence levels of both views and samples. By assigning weight to each sample under each view properly, we can obtain a robust consensus representation via fusing the noiseless structures among views and samples. We further develop a regularizer on weight parameters based on the convex conjugacy theory, and samples weights are determined in an adaptive manner. An efficient iterative algorithm is developed with a convergence guarantee. Experimental results on four benchmarks demonstrate the correctness and effectiveness of the proposed model.Comment: 7 page

    Tracking Persons-of-Interest via Unsupervised Representation Adaptation

    Full text link
    Multi-face tracking in unconstrained videos is a challenging problem as faces of one person often appear drastically different in multiple shots due to significant variations in scale, pose, expression, illumination, and make-up. Existing multi-target tracking methods often use low-level features which are not sufficiently discriminative for identifying faces with such large appearance variations. In this paper, we tackle this problem by learning discriminative, video-specific face representations using convolutional neural networks (CNNs). Unlike existing CNN-based approaches which are only trained on large-scale face image datasets offline, we use the contextual constraints to generate a large number of training samples for a given video, and further adapt the pre-trained face CNN to specific videos using discovered training samples. Using these training samples, we optimize the embedding space so that the Euclidean distances correspond to a measure of semantic face similarity via minimizing a triplet loss function. With the learned discriminative features, we apply the hierarchical clustering algorithm to link tracklets across multiple shots to generate trajectories. We extensively evaluate the proposed algorithm on two sets of TV sitcoms and YouTube music videos, analyze the contribution of each component, and demonstrate significant performance improvement over existing techniques.Comment: Project page: http://vllab1.ucmerced.edu/~szhang/FaceTracking

    Object Detection with Pixel Intensity Comparisons Organized in Decision Trees

    Full text link
    We describe a method for visual object detection based on an ensemble of optimized decision trees organized in a cascade of rejectors. The trees use pixel intensity comparisons in their internal nodes and this makes them able to process image regions very fast. Experimental analysis is provided through a face detection problem. The obtained results are encouraging and demonstrate that the method has practical value. Additionally, we analyse its sensitivity to noise and show how to perform fast rotation invariant object detection. Complete source code is provided at https://github.com/nenadmarkus/pico

    Unsupervised robotic sorting: Towards autonomous decision making robots

    Full text link
    Autonomous sorting is a crucial task in industrial robotics which can be very challenging depending on the expected amount of automation. Usually, to decide where to sort an object, the system needs to solve either an instance retrieval (known object) or a supervised classification (predefined set of classes) problem. In this paper, we introduce a new decision making module, where the robotic system chooses how to sort the objects in an unsupervised way. We call this problem Unsupervised Robotic Sorting (URS) and propose an implementation on an industrial robotic system, using deep CNN feature extraction and standard clustering algorithms. We carry out extensive experiments on various standard datasets to demonstrate the efficiency of the proposed image clustering pipeline. To evaluate the robustness of our URS implementation, we also introduce a complex real world dataset containing images of objects under various background and lighting conditions. This dataset is used to fine tune the design choices (CNN and clustering algorithm) for URS. Finally, we propose a method combining our pipeline with ensemble clustering to use multiple images of each object. This redundancy of information about the objects is shown to increase the clustering results.Comment: Paper published in International Journal of Artificial Intelligence and Applications (IJAIA), March 2018, Volume 9, Number 2 17 pages, 5 figures, 7 tables. arXiv admin note: text overlap with arXiv:1707.0170

    Detecting Text in the Wild with Deep Character Embedding Network

    Full text link
    Most text detection methods hypothesize texts are horizontal or multi-oriented and thus define quadrangles as the basic detection unit. However, text in the wild is usually perspectively distorted or curved, which can not be easily tackled by existing approaches. In this paper, we propose a deep character embedding network (CENet) which simultaneously predicts the bounding boxes of characters and their embedding vectors, thus making text detection a simple clustering task in the character embedding space. The proposed method does not require strong assumptions of forming a straight line on general text detection, which provides flexibility on arbitrarily curved or perspectively distorted text. For character detection task, a dense prediction subnetwork is designed to obtain the confidence score and bounding boxes of characters. For character embedding task, a subnet is trained with contrastive loss to project detected characters into embedding space. The two tasks share a backbone CNN from which the multi-scale feature maps are extracted. The final text regions can be easily achieved by a thresholding process on character confidence and embedding distance of character pairs. We evaluated our method on ICDAR13, ICDAR15, MSRA-TD500, and Total-Text. The proposed method achieves state-of-the-art or comparable performance on all these datasets, and shows substantial improvement in the irregular-text datasets, i.e. Total-Text.Comment: Asian Conference on Computer Vision 201

    Kernelized Multiview Subspace Analysis by Self-weighted Learning

    Full text link
    With the popularity of multimedia technology, information is always represented or transmitted from multiple views. Most of the existing algorithms are graph-based ones to learn the complex structures within multiview data but overlooked the information within data representations. Furthermore, many existing works treat multiple views discriminatively by introducing some hyperparameters, which is undesirable in practice. To this end, abundant multiview based methods have been proposed for dimension reduction. However, there are still no research to leverage the existing work into a unified framework. To address this issue, in this paper, we propose a general framework for multiview data dimension reduction, named Kernelized Multiview Subspace Analysis (KMSA). It directly handles the multi-view feature representation in the kernel space, which provides a feasible channel for direct manipulations on multiview data with different dimensions. Meanwhile, compared with those graph-based methods, KMSA can fully exploit information from multiview data with nothing to lose. Furthermore, since different views have different influences on KMSA, we propose a self-weighted strategy to treat different views discriminatively according to their contributions. A co-regularized term is proposed to promote the mutual learning from multi-views. KMSA combines self-weighted learning with the co-regularized term to learn appropriate weights for all views. We also discuss the influence of the parameters in KMSA regarding the weights of multi-views. We evaluate our proposed framework on 6 multiview datasets for classification and image retrieval. The experimental results validate the advantages of our proposed method.Comment: Accepted by IEEE Transactions on Multimedia with Minor Revision

    Multi-graph Fusion for Multi-view Spectral Clustering

    Full text link
    A panoply of multi-view clustering algorithms has been developed to deal with prevalent multi-view data. Among them, spectral clustering-based methods have drawn much attention and demonstrated promising results recently. Despite progress, there are still two fundamental questions that stay unanswered to date. First, how to fuse different views into one graph. More often than not, the similarities between samples may be manifested differently by different views. Many existing algorithms either simply take the average of multiple views or just learn a common graph. These simple approaches fail to consider the flexible local manifold structures of all views. Hence, the rich heterogeneous information is not fully exploited. Second, how to learn the explicit cluster structure. Most existing methods don't pay attention to the quality of the graphs and perform graph learning and spectral clustering separately. Those unreliable graphs might lead to suboptimal clustering results. To fill these gaps, in this paper, we propose a novel multi-view spectral clustering model which performs graph fusion and spectral clustering simultaneously. The fusion graph approximates the original graph of each individual view but maintains an explicit cluster structure. Experiments on four widely used data sets confirm the superiority of the proposed method.Comment: submitted to Knowledge-based System

    Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning

    Full text link
    A family of loss functions built on pair-based computation have been proposed in the literature which provide a myriad of solutions for deep metric learning. In this paper, we provide a general weighting framework for understanding recent pair-based loss functions. Our contributions are three-fold: (1) we establish a General Pair Weighting (GPW) framework, which casts the sampling problem of deep metric learning into a unified view of pair weighting through gradient analysis, providing a powerful tool for understanding recent pair-based loss functions; (2) we show that with GPW, various existing pair-based methods can be compared and discussed comprehensively, with clear differences and key limitations identified; (3) we propose a new loss called multi-similarity loss (MS loss) under the GPW, which is implemented in two iterative steps (i.e., mining and weighting). This allows it to fully consider three similarities for pair weighting, providing a more principled approach for collecting and weighting informative pairs. Finally, the proposed MS loss obtains new state-of-the-art performance on four image retrieval benchmarks, where it outperforms the most recent approaches, such as ABE\cite{Kim_2018_ECCV} and HTL by a large margin: 60.6% to 65.7% on CUB200, and 80.9% to 88.0% on In-Shop Clothes Retrieval dataset at Recall@1. Code is available at https://github.com/MalongTech/research-ms-loss.Comment: Accepted CVPR 2019, rewrite main method to be more clea
    corecore