920 research outputs found

    Energy-based Self-attentive Learning of Abstractive Communities for Spoken Language Understanding

    Full text link
    Abstractive community detection is an important spoken language understanding task, whose goal is to group utterances in a conversation according to whether they can be jointly summarized by a common abstractive sentence. This paper provides a novel approach to this task. We first introduce a neural contextual utterance encoder featuring three types of self-attention mechanisms. We then train it using the siamese and triplet energy-based meta-architectures. Experiments on the AMI corpus show that our system outperforms multiple energy-based and non-energy based baselines from the state-of-the-art. Code and data are publicly available.Comment: Update baseline

    Learning Similarity Attention

    Full text link
    We consider the problem of learning similarity functions. While there has been substantial progress in learning suitable distance metrics, these techniques in general lack decision reasoning, i.e., explaining why the input set of images is similar or dissimilar. In this work, we solve this key problem by proposing the first method to generate generic visual similarity explanations with gradient-based attention. We demonstrate that our technique is agnostic to the specific similarity model type, e.g., we show applicability to Siamese, triplet, and quadruplet models. Furthermore, we make our proposed similarity attention a principled part of the learning process, resulting in a new paradigm for learning similarity functions. We demonstrate that our learning mechanism results in more generalizable, as well as explainable, similarity models. Finally, we demonstrate the generality of our framework by means of experiments on a variety of tasks, including image retrieval, person re-identification, and low-shot semantic segmentation.Comment: 10 pages, 7 figures, 4 table

    Class interference regularization

    Get PDF
    Contrastive losses yield state-of-the-art performance for person re-identification, face verification and few shot learning. They have recently outperformed the cross-entropy loss on classification at the ImageNet scale and outperformed all self-supervision prior results by a large margin (SimCLR). Simple and effective regularization techniques such as label smoothing and self-distillation do not apply anymore, because they act on multinomial label distributions, adopted in cross-entropy losses, and not on tuple comparative terms, which characterize the contrastive losses. Here we propose a novel, simple and effective regularization technique, the Class Interference Regularization (CIR), which applies to cross-entropy losses but is especially effective on contrastive losses. CIR perturbs the output features by randomly moving them towards the average embeddings of the negative classes. To the best of our knowledge, CIR is the first regularization technique to act on the output features. In experimental evaluation, the combination of CIR and a plain Siamese-net with triplet loss yields best few-shot learning performance on the challenging tieredImageNet. CIR also improves the state-of-the-art technique in person re-identification on the Market-1501 dataset, based on triplet loss, and the state-of-the-art technique in person search on the CUHK-SYSU dataset, based on a cross-entropy loss. Finally, on the task of classification CIR performs on par with the popular label smoothing, as demonstrated for CIFAR-10 and -100
    • …
    corecore