49,627 research outputs found

    Analytic theory of difference equations with rational and elliptic coefficients and the Riemann-Hilbert problem

    Full text link
    A new approach to the analytic theory of difference equations with rational and elliptic coefficients is proposed. It is based on the construction of canonical meromorphic solutions which are analytical along "thick paths". The concept of such solutions leads to a notion of local monodromies of difference equations. It is shown that in the continuous limit they converge to the monodromy matrices of differential equations. New type of isomonodromic deformations of difference equations with elliptic coefficients changing the periods of elliptic curves is constructed.Comment: 38 pages, no figures; typos remove

    Fredholm factorization of Wiener-Hopf scalar and matrix kernels

    Get PDF
    A general theory to factorize the Wiener-Hopf (W-H) kernel using Fredholm Integral Equations (FIE) of the second kind is presented. This technique, hereafter called Fredholm factorization, factorizes the W-H kernel using simple numerical quadrature. W-H kernels can be either of scalar form or of matrix form with arbitrary dimensions. The kernel spectrum can be continuous (with branch points), discrete (with poles), or mixed (with branch points and poles). In order to validate the proposed method, rational matrix kernels in particular are studied since they admit exact closed form factorization. In the appendix a new analytical method to factorize rational matrix kernels is also described. The Fredholm factorization is discussed in detail, supplying several numerical tests. Physical aspects are also illustrated in the framework of scattering problems: in particular, diffraction problems. Mathematical proofs are reported in the pape

    Basic Polyhedral Theory

    Full text link
    This is a chapter (planned to appear in Wiley's upcoming Encyclopedia of Operations Research and Management Science) describing parts of the theory of convex polyhedra that are particularly important for optimization. The topics include polyhedral and finitely generated cones, the Weyl-Minkowski Theorem, faces of polyhedra, projections of polyhedra, integral polyhedra, total dual integrality, and total unimodularity.Comment: 14 page

    Rational fixed points for linear group actions

    Full text link
    Let kk be a finitely generated field, let XX be an algebraic variety and GG a linear algebraic group, both defined over kk. Suppose GG acts on XX and every element of a Zariski-dense semigroup Γ⊂G(k)\Gamma \subset G(k) has a rational fixed point in X(k)X(k). We then deduce, under some mild technical assumptions, the existence of a rational map G→XG\to X, defined over kk, sending each element g∈Gg\in G to a fixed point for gg. The proof makes use of a recent result of Ferretti and Zannier on diophantine equations involving linear recurrences. As a by-product of the proof, we obtain a version of the classical Hilbert Irreducibility Theorem valid for linear algebraic groups.Comment: 35 pages, Plain Tex. A gap in the previous proof of Theorem 1.2 overcome, plus minor changes. Thanks to J. Bernik and the refere

    Apollonian Circle Packings: Geometry and Group Theory III. Higher Dimensions

    Full text link
    This paper gives nn-dimensional analogues of the Apollonian circle packings in parts I and II. We work in the space \sM_{\dd}^n of all nn-dimensional oriented Descartes configurations parametrized in a coordinate system, ACC-coordinates, as those (n+2)×(n+2)(n+2) \times (n+2) real matrices \bW with \bW^T \bQ_{D,n} \bW = \bQ_{W,n} where QD,n=x12+...+xn+22−1n(x1+...+xn+2)2Q_{D,n} = x_1^2 +... + x_{n+2}^2 - \frac{1}{n}(x_1 +... + x_{n+2})^2 is the nn-dimensional Descartes quadratic form, QW,n=−8x1x2+2x32+...+2xn+22Q_{W,n} = -8x_1x_2 + 2x_3^2 + ... + 2x_{n+2}^2, and \bQ_{D,n} and \bQ_{W,n} are their corresponding symmetric matrices. There are natural actions on the parameter space \sM_{\dd}^n. We introduce nn-dimensional analogues of the Apollonian group, the dual Apollonian group and the super-Apollonian group. These are finitely generated groups with the following integrality properties: the dual Apollonian group consists of integral matrices in all dimensions, while the other two consist of rational matrices, with denominators having prime divisors drawn from a finite set SS depending on the dimension. We show that the the Apollonian group and the dual Apollonian group are finitely presented, and are Coxeter groups. We define an Apollonian cluster ensemble to be any orbit under the Apollonian group, with similar notions for the other two groups. We determine in which dimensions one can find rational Apollonian cluster ensembles (all curvatures rational) and strongly rational Apollonian sphere ensembles (all ACC-coordinates rational).Comment: 37 pages. The third in a series on Apollonian circle packings beginning with math.MG/0010298. Revised and extended. Added: Apollonian groups and Apollonian Cluster Ensembles (Section 4),and Presentation for n-dimensional Apollonian Group (Section 5). Slight revision on March 10, 200

    Associated primes of local cohomology modules and of Frobenius powers

    Full text link
    We construct normal hypersurfaces whose local cohomology modules have infinitely many associated primes. These include unique factorization domains of characteristic zero with rational singularities, as well as F-regular unique factorization domains of positive characteristic. As a consequence, we answer a question on the associated primes of Frobenius powers of ideals, which arose from the localization problem in tight closure theory

    Uniform Mixing and Association Schemes

    Full text link
    We consider continuous-time quantum walks on distance-regular graphs of small diameter. Using results about the existence of complex Hadamard matrices in association schemes, we determine which of these graphs have quantum walks that admit uniform mixing. First we apply a result due to Chan to show that the only strongly regular graphs that admit instantaneous uniform mixing are the Paley graph of order nine and certain graphs corresponding to regular symmetric Hadamard matrices with constant diagonal. Next we prove that if uniform mixing occurs on a bipartite graph X with n vertices, then n is divisible by four. We also prove that if X is bipartite and regular, then n is the sum of two integer squares. Our work on bipartite graphs implies that uniform mixing does not occur on C_{2m} for m >= 3. Using a result of Haagerup, we show that uniform mixing does not occur on C_p for any prime p such that p >= 5. In contrast to this result, we see that epsilon-uniform mixing occurs on C_p for all primes p.Comment: 23 page
    • …
    corecore