14 research outputs found

    The Abel-Zeilberger Algorithm

    Full text link
    We use both Abel's lemma on summation by parts and Zeilberger's algorithm to find recurrence relations for definite summations. The role of Abel's lemma can be extended to the case of linear difference operators with polynomial coefficients. This approach can be used to verify and discover identities involving harmonic numbers and derangement numbers. As examples, we use the Abel-Zeilberger algorithm to prove the Paule-Schneider identities, the Apery-Schmidt-Strehl identity, Calkin's identity and some identities involving Fibonacci numbers.Comment: 18 page

    Low Complexity Algorithms for Linear Recurrences

    Get PDF
    We consider two kinds of problems: the computation of polynomial and rational solutions of linear recurrences with coefficients that are polynomials with integer coefficients; indefinite and definite summation of sequences that are hypergeometric over the rational numbers. The algorithms for these tasks all involve as an intermediate quantity an integer NN (dispersion or root of an indicial polynomial) that is potentially exponential in the bit size of their input. Previous algorithms have a bit complexity that is at least quadratic in NN. We revisit them and propose variants that exploit the structure of solutions and avoid expanding polynomials of degree NN. We give two algorithms: a probabilistic one that detects the existence or absence of nonzero polynomial and rational solutions in O(Nlog2N)O(\sqrt{N}\log^{2}N) bit operations; a deterministic one that computes a compact representation of the solution in O(Nlog3N)O(N\log^{3}N) bit operations. Similar speed-ups are obtained in indefinite and definite hypergeometric summation. We describe the results of an implementation.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistributio

    Converging to Gosper's Algorithm

    Full text link
    Given two polynomials, we find a convergence property of the GCD of the rising factorial and the falling factorial. Based on this property, we present a unified approach to computing the universal denominators as given by Gosper's algorithm and Abramov's algorithm for finding rational solutions to linear difference equations with polynomial coefficients.Comment: 13 page

    Constructing minimal telescopers for rational functions in three discrete variables

    Full text link
    We present a new algorithm for constructing minimal telescopers for rational functions in three discrete variables. This is the first discrete reduction-based algorithm that goes beyond the bivariate case. The termination of the algorithm is guaranteed by a known existence criterion of telescopers. Our approach has the important feature that it avoids the potentially costly computation of certificates. Computational experiments are also provided so as to illustrate the efficiency of our approach
    corecore