22 research outputs found

    Optimal Strong Rates of Convergence for a Space-Time Discretization of the Stochastic Allen-Cahn Equation with multiplicative noise

    Full text link
    The stochastic Allen-Cahn equation with multiplicative noise involves the nonlinear drift operator A(x)=Δx(x21)x{\mathscr A}(x) = \Delta x - \bigl(\vert x\vert^2 -1\bigr)x. We use the fact that A(x)=J(x){\mathscr A}(x) = -{\mathcal J}^{\prime}(x) satisfies a weak monotonicity property to deduce uniform bounds in strong norms for solutions of the temporal, as well as of the spatio-temporal discretization of the problem. This weak monotonicity property then allows for the estimate sup1jJE[XtjYjL22]Cδ(k1δ+h2) \underset{1 \leq j \leq J}\sup {\mathbb E}\bigl[ \Vert X_{t_j} - Y^j\Vert_{{\mathbb L}^2}^2\bigr] \leq C_{\delta}(k^{1-\delta} + h^2) for all small δ>0\delta>0, where XX is the strong variational solution of the stochastic Allen-Cahn equation, while {Yj:0jJ}\big\{Y^j:0\le j\le J\big\} solves a structure preserving finite element based space-time discretization of the problem on a temporal mesh {tj;1jJ}\{ t_j;\, 1 \leq j \leq J\} of size k>0k>0 which covers [0,T][0,T]

    A splitting semi-implicit method for stochastic incompressible Euler equations on T2\mathbb T^2

    Full text link
    The main difficulty in studying numerical method for stochastic evolution equations (SEEs) lies in the treatment of the time discretization (J. Printems. [ESAIM Math. Model. Numer. Anal. (2001)]). Although fruitful results on numerical approximations for SEEs have been developed, as far as we know, none of them include that of stochastic incompressible Euler equations. To bridge this gap, this paper proposes and analyses a splitting semi-implicit method in temporal direction for stochastic incompressible Euler equations on torus T2\mathbb{T}^2 driven by an additive noise. By a Galerkin approximation and the fixed point technique, we establish the unique solvability of the proposed method. Based on the regularity estimates of both exact and numerical solutions, we measure the error in L2(T2)L^2(\mathbb{T}^2) and show that the pathwise convergence order is nearly 12\frac{1}{2} and the convergence order in probability is almost 11
    corecore