3 research outputs found

    Low-Complexity Adaptive Streaming via Optimized A Priori Media Pruning

    Get PDF
    Abstract — Source pruning is performed whenever the data rate of the compressed source exceeds the available communication or storage resources. In this paper, we propose a framework for rate-distortion optimized pruning of a video source. The framework selects which packets, if any, from the compressed representation of the source should be discarded so that the data rate of the pruned source is adjusted accordingly, while the resulting reconstruction distortion is minimized. The framework relies on a rate-distortion preamble that is created at compression time for the video source and that comprises the video packets ’ sizes, interdependencies and distortion importances. As one application of the pruning framework, we design a low-complexity rate-distortion optimized ARQ scheme for video streaming. In the experiments, we examine the performance of the pruning framework depending on the employed distortion model that describes the effect of packet interdependencies on the reconstruction quality. In addition, our experimental results show that the enhanced ARQ technique provides significant performance gains over a conventional system for video streaming that does not take into account the different importance of the individual video packets. These gains are achieved without an increase in packet scheduling complexity, which makes the proposed technique suitable for online R-D optimized streaming. I

    Rate-Distortion Optimized Sender-Driven Streaming Over Best-Effort Networks

    No full text
    This paper addresses the problem of streaming packetized media over a lossy packet network, in a rate-distortion optimized way. Out of all the packets that a sender could transmit at a given transmission opportunity, we show how the sender should compute which packets, if any, to transmit in order to meet an average rate constraint while minimizing the average end-to-end distortion. Experimental results show that our system has steady-state gains of 3--7 dB or more over systems that are not rate-distortion optimized

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic
    corecore