6,601 research outputs found

    A General Numerical Method for Hyper-Redundant Manipulator Inverse Kinematics

    Get PDF
    Hyper-redundant robots have a very large or infinite degree of kinematic redundancy. A generalized resolved-rate technique for solving hyper-redundant manipulator inverse kinematics using a backbone curve is introduced. This method is applicable even in cases when explicit representation of the backbone curve intrinsic geometry cannot be written in closed form. Problems of end-effector trajectory tracking which were previously intractable can now be handled with this technique. Examples include configurations generated using the calculus of variations. The method is naturally parallelizable for fast digital and/or analog computation

    A modal approach to hyper-redundant manipulator kinematics

    Get PDF
    This paper presents novel and efficient kinematic modeling techniques for “hyper-redundant” robots. This approach is based on a “backbone curve” that captures the robot's macroscopic geometric features. The inverse kinematic, or “hyper-redundancy resolution,” problem reduces to determining the time varying backbone curve behavior. To efficiently solve the inverse kinematics problem, the authors introduce a “modal” approach, in which a set of intrinsic backbone curve shape functions are restricted to a modal form. The singularities of the modal approach, modal non-degeneracy conditions, and modal switching are considered. For discretely segmented morphologies, the authors introduce “fitting” algorithms that determine the actuator displacements that cause the discrete manipulator to adhere to the backbone curve. These techniques are demonstrated with planar and spatial mechanism examples. They have also been implemented on a 30 degree-of-freedom robot prototype

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods
    corecore