26,723 research outputs found

    Estimation and confidence sets for sparse normal mixtures

    Get PDF
    For high dimensional statistical models, researchers have begun to focus on situations which can be described as having relatively few moderately large coefficients. Such situations lead to some very subtle statistical problems. In particular, Ingster and Donoho and Jin have considered a sparse normal means testing problem, in which they described the precise demarcation or detection boundary. Meinshausen and Rice have shown that it is even possible to estimate consistently the fraction of nonzero coordinates on a subset of the detectable region, but leave unanswered the question of exactly in which parts of the detectable region consistent estimation is possible. In the present paper we develop a new approach for estimating the fraction of nonzero means for problems where the nonzero means are moderately large. We show that the detection region described by Ingster and Donoho and Jin turns out to be the region where it is possible to consistently estimate the expected fraction of nonzero coordinates. This theory is developed further and minimax rates of convergence are derived. A procedure is constructed which attains the optimal rate of convergence in this setting. Furthermore, the procedure also provides an honest lower bound for confidence intervals while minimizing the expected length of such an interval. Simulations are used to enable comparison with the work of Meinshausen and Rice, where a procedure is given but where rates of convergence have not been discussed. Extensions to more general Gaussian mixture models are also given.Comment: Published in at http://dx.doi.org/10.1214/009053607000000334 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Global testing against sparse alternatives in time-frequency analysis

    Get PDF
    In this paper, an over-sampled periodogram higher criticism (OPHC) test is proposed for the global detection of sparse periodic effects in a complex-valued time series. An explicit minimax detection boundary is established between the rareness and weakness of the complex sinusoids hidden in the series. The OPHC test is shown to be asymptotically powerful in the detectable region. Numerical simulations illustrate and verify the effectiveness of the proposed test. Furthermore, the periodogram over-sampled by O(logN)O(\log N) is proven universally optimal in global testing for periodicities under a mild minimum separation condition.Comment: Published at http://dx.doi.org/10.1214/15-AOS1412 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Detection of Sparse Positive Dependence

    Full text link
    In a bivariate setting, we consider the problem of detecting a sparse contamination or mixture component, where the effect manifests itself as a positive dependence between the variables, which are otherwise independent in the main component. We first look at this problem in the context of a normal mixture model. In essence, the situation reduces to a univariate setting where the effect is a decrease in variance. In particular, a higher criticism test based on the pairwise differences is shown to achieve the detection boundary defined by the (oracle) likelihood ratio test. We then turn to a Gaussian copula model where the marginal distributions are unknown. Standard invariance considerations lead us to consider rank tests. In fact, a higher criticism test based on the pairwise rank differences achieves the detection boundary in the normal mixture model, although not in the very sparse regime. We do not know of any rank test that has any power in that regime
    corecore