967 research outputs found

    A Media Access Control Protocol for Wireless Adhoc Networks with Misbehaviour Avoidance

    Get PDF
    The most common wireless Medium Access Control (MAC) protocol is IEEE 802.11. Currently IEEE 802.11 standard protocol is not resilient for many identified MAC layer attacks, because the protocol is designed without intention for providing security and with the assumption that all the nodes in the wireless network adhere to the protocol. However, nodes may purposefully show misbehaviours at the MAC layer in order to obtain extra bandwidth con-serve resources and degrade or disrupt the network performance. This research proposes a secure MAC protocol for MAC layer which has integrated with a novel misbehaviour detection and avoidance mechanism for Mobile Ad Hoc Networks (MANETs). The proposed secure MAC protocol the sender and receiver work collaboratively together to handshakes prior to deciding the back-off values. Common neighbours of the sender and receiver contributes effectively to misbehaviours detection and avoidance process at MAC layer. In addition the proposed solution introduces a new trust distribution model in the network by assuming none of the wireless nodes need to trust each other. The secure MAC protocol also assumes that misbehaving nodes have significant levels of intelligence to avoid the detectio

    Improvement to efficient counter-based broadcast scheme through random assessment delay adaptation for MANETs

    Get PDF
    Flooding, the process in which each node retransmits every uniquely received packet exactly once is the simplest and most commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision, a phenomenon collectively referred to as broadcast storm problem. To mitigate this problem, several broadcast schemes have been proposed which are commonly divided into two categories; deterministic schemes and probabilistic schemes. Probabilistic methods are quite promising because they can reduce the number of redundant rebroadcast without any control overhead. In this paper, we investigate the performance of our earlier proposed efficient counter-based broadcast scheme by adapting its random assessment delay (RAD) mechanism to network congestion. Simulation results revealed that this simple adaptation achieves superior performance in terms of saved rebroadcast, end-to-end delay and reachability

    An efficient counter-based broadcast scheme for mobile ad hoc networks

    Get PDF
    In mobile ad hoc networks (MANETs), broadcasting plays a fundamental role, diffusing a message from a given source node to all the other nodes in the network. Flooding is the simplest and commonly used mechanism for broadcasting in MANETs, where each node retransmits every uniquely received message exactly once. Despite its simplicity, it however generates redundant rebroadcast messages which results in high contention and collision in the network, a phenomenon referred to as broadcast storm problem. Pure probabilistic approaches have been proposed to mitigate this problem inherent with flooding, where mobile nodes rebroadcast a message with a probability p which can be fixed or computed based on the local density. However, these approaches reduce the number of rebroadcasts at the expense of reachability. On the other hand, counter-based approaches inhibit a node from broadcasting a packet based on the number of copies of the broadcast packet received by the node within a random access delay time. These schemes achieve better throughput and reachability, but suffer from relatively longer delay. In this paper, we propose an efficient broadcasting scheme that combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Simulation results reveal that the new scheme achieves superior performance in terms of saved-rebroadcast, reachability and latency

    Relative fairness and optimized throughput for mobile ad hoc networks

    Get PDF
    International audienceAlthough IEEE 802.11 provides several transmission rates, a suitable rate adaptation taking into account the relative fairness among all competitive stations, according to the underlying channel quality remains a challenge in Mobile Ad hoc Networks (MANETs). The absence of any fixed infrastructure and any centralized control makes the existing solutions for WLANs like CARA (collision-aware rate adaptation) [4] not appropriate for MANETs. In this paper, we propose a new analytical model with a suitable approach to ensure a relative fairness among all competitive nodes of a particular channel. Our model deals with the channel quality while respecting the nodes, based on transmission successes and failures in a mobility context. Finally, each node calculates its own probability to access the channel in a distributed manner. We evaluate the performance of our scheme with others in the context of MANET via extensive and detailed simulations. The performance differentials are analysed using varying network load and transmission range. The simulation results illustrate that our proposed approach ensures a better tradeoff between fairness and throughput

    A high-throughput MAC protocol for wireless ad hoc networks

    Get PDF
    2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
    corecore