244 research outputs found

    Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of kidney cysts leading to kidney failure in adulthood. Inhibition of mammalian target of rapamycin (mTOR) slows polycystic kidney disease (PKD) progression in animal models, but randomized controlled trials failed to prove efficacy of mTOR inhibitor treatment. Here, we demonstrate that treatment with mTOR inhibitors result in the removal of negative feedback loops and up-regulates pro-proliferative phosphatidylinositol 3-kinase (PI3K)-Akt and PI3K-extracellular signal-regulated kinase (ERK) signaling in rat and mouse PKD models. Dual mTOR/PI3K inhibition with NVP-BEZ235 abrogated these pro-proliferative signals and normalized kidney morphology and function by blocking proliferation and fibrosis. Our findings suggest that multi-target PI3K/mTOR inhibition may represent a potential treatment for ADPKD

    p21 is decreased in polycystic kidney disease and leads to increased epithelial cell cycle progression: roscovitine augments p21 levels.

    Get PDF
    BackgroundAutosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease with few treatment options other than renal replacement therapy. p21, a cyclin kinase inhibitor which has pleiotropic effects on the cell cycle, in many cases acts to suppress cell cycle progression and to prevent apoptosis. Because defects in cell cycle arrest and apoptosis of renal tubular epithelial cells occur in PKD, and in light of earlier reports that polycystin-1 upregulates p21 and that the cyclin-dependent kinase inhibitor roscovitine arrests progression in a mouse model, we asked whether (1) p21 deficiency might underlie ADPKD and (2) the mechanism of the salutary roscovitine effect on PKD involves p21.Methodsp21 levels in human and animal tissue samples as well as cell lines were examined by immunoblotting and/or immunohistochemisty. Apoptosis was assessed by PARP cleavage. p21 expression was attenuated in a renal tubular epithelial cell line by antisense methods, and proliferation in response to p21 attenuation and to roscovitine was assessed by the MTT assay.ResultsWe show that p21 is decreased in human as well as a non-transgenic rat model of ADPKD. In addition, hepatocyte growth factor, which induces transition from a cystic to a tubular phenotype, increases p21 levels. Furthermore, attenuation of p21 results in augmentation of cell cycle transit in vitro. Thus, levels of p21 are inversely correlated with renal tubular epithelial cell proliferation. Roscovitine, which has been shown to arrest progression in a murine model of PKD, increases p21 levels and decreases renal tubular epithelial cell proliferation, with no affect on apoptosis.ConclusionThe novelty of our study is the demonstration in vivo in humans and rat models of a decrement of p21 in cystic kidneys as compared to non-cystic kidneys. Validation of a potential pathogenetic model of increased cyst formation due to enhanced epithelial proliferation and apoptosis mediated by p21 suggests a mechanism for the salutary effect of roscovitine in ADPKD and supports further investigation of p21 as a target for future therapy

    Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD)

    Get PDF
    Background. Autosomal dominant polycystic kidney disease (ADPKD) is characterized by dysregulated tubular epithelial cell growth, resulting in the formation of multiple renal cysts and progressive renal failure. To date, there is no effective treatment for ADPKD. The mammalian target of rapamycin (mTOR) is an atypical protein kinase and a central controller of cell growth and proliferation. We examined the effect of the mTOR inhibitor sirolimus (rapamycin) on renal functional loss and cyst progression in the Han:SPRD rat model of ADPKD. Methods. Five-week-old male heterozygous cystic (Cy/+) and wild-type normal (+/+) rats were administered sirolimus (2 mg/kg/day) orally through the drinking water for 3 months. The renal function was monitored throughout the treatment phase, and rats were sacrificed thereafter. Kidneys were analysed histomorphometrically, and for the expression and phosphorylation of S6K, a well-characterized target of mTOR in the regulation of cell growth. Results. The steady increase in BUN and creatinine in Cy/+ rats was reduced by 39 and 34%, respectively with sirolimus after 3 months treatment. Kidney weight and 2-kidney/total body weight (2K/TBW) ratios were reduced by 34 and 26% in sirolimus-treated Cy/+ rats. Cyst volume density was also reduced by 18%. Of importance, Cy/+ rats displayed enhanced levels of total and phosphorylated S6K. Sirolimus effectively reduced total and phosphorylated levels of S6K. Conclusion. We conclude that oral sirolimus markedly delays the loss of renal function and retards cyst development in Han:SPRD rats with ADPKD. Our data also suggest that activation of the S6K signalling pathway plays an important role in the pathogenesis of PKD. Sirolimus could be a useful drug to retard progressive renal failure in patients with ADPK

    Sirolimus ameliorates the enhanced expression of metalloproteinases in a rat model of autosomal dominant polycystic kidney disease

    Get PDF
    Background. Remodelling of matrix and tubular basement membranes (TBM) is a characteristic of polycystic kidney disease. We hypothesized that matrix and TBM degradation by metalloproteinases (MMPs) could promote cyst formation. We therefore investigated the renal expression of MMPs in the Han:SPRD rat model of autosomal dominant polycystic kidney disease (ADPKD) and examined the effect of sirolimus treatment on MMPs. Methods. 5-week-old male heterozygous (Cy/+) and wild-type normal (+/+) rats were treated with sirolimus (2 mg/kg/day) through drinking water for 3 months. Results. The mRNA and protein levels of MMP-2 and MMP-14 were markedly increased in the kidneys of heterozygous Cy/+ animals compared to wild-type +/+ as shown by RT-PCR and Western blot analyses for MMP-2 and MMP-14, and by zymography for MMP-2. Strong MMP-2 expression was detected by immunoperoxidase staining in cystic epithelial cells that also displayed an altered, thickened TBM. Tissue inhibitor of metalloproteinases-2 (TIMP-2) expression was not changed in Cy/+ kidneys. Sirolimus treatment leads to decreased protein expression of MMP-2 and MMP-14 in Cy/+, whereas MMP-2 and MMP-14 mRNA levels and TIMP-2 protein levels were not affected by sirolimus. Conclusion. In summary, in kidneys of the Han:SPRD rat model of ADPKD, there is a marked upregulation of MMP-2 and MMP-14. Sirolimus treatment was associated with a marked improvement of MMP-2 and MMP-14 overexpression, and this correlated also with less matrix and TBM alterations and milder cystic diseas

    Sirolimus and kidney growth in autosomal dominant polycystic kidney disease

    Full text link
    BACKGROUND: In autosomal dominant polycystic kidney disease (ADPKD), aberrant activation of the mammalian target of rapamycin (mTOR) pathway is associated with progressive kidney enlargement. The drug sirolimus suppresses mTOR signaling. METHODS: In this 18-month, open-label, randomized, controlled trial, we sought to determine whether sirolimus halts the growth in kidney volume among patients with ADPKD. We randomly assigned 100 patients between the ages of 18 and 40 years to receive either sirolimus (target dose, 2 mg daily) or standard care. All patients had an estimated creatinine clearance of at least 70 ml per minute. Serial magnetic resonance imaging was performed to measure the volume of polycystic kidneys. The primary outcome was total kidney volume at 18 months on blinded assessment. Secondary outcomes were the glomerular filtration rate and urinary albumin excretion rate at 18 months. RESULTS: At randomization, the median total kidney volume was 907 cm(3) (interquartile range, 577 to 1330) in the sirolimus group and 1003 cm(3) (interquartile range, 574 to 1422) in the control group. The median increase over the 18-month period was 99 cm(3) (interquartile range, 43 to 173) in the sirolimus group and 97 cm(3) (interquartile range, 37 to 181) in the control group. At 18 months, the median total kidney volume in the sirolimus group was 102% of that in the control group (95% confidence interval, 99 to 105; P=0.26). The glomerular filtration rate did not differ significantly between the two groups; however, the urinary albumin excretion rate was higher in the sirolimus group. CONCLUSIONS: In adults with ADPKD and early chronic kidney disease, 18 months of treatment with sirolimus did not halt polycystic kidney growth. (ClinicalTrials.gov number, NCT00346918.

    Safety and tolerability of sirolimus treatment in patients with autosomal dominant polycystic kidney disease

    Get PDF
    Background. We initiated a randomized controlled clinical trial to assess the effect of sirolimus on disease progression in patients affected by autosomal dominant polycystic kidney disease (ADPKD). Here we report the preliminary safety results of the first 6 months of treatment. Method. A total of 25 patients were randomized to sirolimus 2 mg/day and 25 patients to no treatment except standard care. Treatment adherence was monitored electronically. At baseline and at Month 6, laboratory parameters were analysed and the urinary protein profile in 24-h urine collections was determined. Results. Both treatment groups were well balanced for age, sex and renal function. In 94.1 ± 11.4% of the study days, patients in the sirolimus group were exposed to the drug when assuming a therapeutic efficacy duration of 30 h. At Month 6, the mean sirolimus dose and trough level were 1.28 ± 0.71 mg/day and 3.8 ± 1.9 μg/l, respectively. Glomerular (albumin, transferrin, IgG) and tubular (retinol-binding protein, α1-microglobulin) protein excretion remained unchanged. Glomerular filtration rate also did not change significantly. Haematological parameters were similar in both groups, except for a mild reduction of the mean corpuscular volume of erythrocytes in patients receiving sirolimus. Lipid levels were similar in both groups. Adverse events were transient and mild, and no grade 3 or 4 events occurred. The incidence of infections was similar in the sirolimus group (80%) and the standard group (88%). The most common gastrointestinal adverse events were mucositis (72% in the sirolimus group versus 16% in the standard group, P = 0.0001) and diarrhoea (36% in the sirolimus versus 20% in the standard group, P = 0.345). Conclusion. Treatment of ADPKD patients with sirolimus with a dose of 1-2 mg/day is safe and does not cause proteinuria or impairment of GFR. Treatment adherence was excellent. (ClinicalTrials.gov number, NCT00346918.
    corecore