5,049 research outputs found

    Entropy and Graph Based Modelling of Document Coherence using Discourse Entities: An Application

    Full text link
    We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse entities in text. Experiments with several instantiations of these models show that: (i) our models perform on a par with two other well-known models of text coherence even without any parameter tuning, and (ii) reranking retrieval results according to their coherence scores gives notable performance gains, confirming a relation between document coherence and relevance. This work contributes two novel models of document coherence, the application of which to IR complements recent work in the integration of document cohesiveness or comprehensibility to ranking [5, 56]

    Ranking for Relevance and Display Preferences in Complex Presentation Layouts

    Full text link
    Learning to Rank has traditionally considered settings where given the relevance information of objects, the desired order in which to rank the objects is clear. However, with today's large variety of users and layouts this is not always the case. In this paper, we consider so-called complex ranking settings where it is not clear what should be displayed, that is, what the relevant items are, and how they should be displayed, that is, where the most relevant items should be placed. These ranking settings are complex as they involve both traditional ranking and inferring the best display order. Existing learning to rank methods cannot handle such complex ranking settings as they assume that the display order is known beforehand. To address this gap we introduce a novel Deep Reinforcement Learning method that is capable of learning complex rankings, both the layout and the best ranking given the layout, from weak reward signals. Our proposed method does so by selecting documents and positions sequentially, hence it ranks both the documents and positions, which is why we call it the Double-Rank Model (DRM). Our experiments show that DRM outperforms all existing methods in complex ranking settings, thus it leads to substantial ranking improvements in cases where the display order is not known a priori

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference
    • …
    corecore