26,219 research outputs found

    Decision making under uncertainty

    Get PDF
    Almost all important decision problems are inevitably subject to some level of uncertainty either about data measurements, the parameters, or predictions describing future evolution. The significance of handling uncertainty is further amplified by the large volume of uncertain data automatically generated by modern data gathering or integration systems. Various types of problems of decision making under uncertainty have been subject to extensive research in computer science, economics and social science. In this dissertation, I study three major problems in this context, ranking, utility maximization, and matching, all involving uncertain datasets. First, we consider the problem of ranking and top-k query processing over probabilistic datasets. By illustrating the diverse and conflicting behaviors of the prior proposals, we contend that a single, specific ranking function may not suffice for probabilistic datasets. Instead we propose the notion of parameterized ranking functions, that generalize or can approximate many of the previously proposed ranking functions. We present novel exact or approximate algorithms for efficiently ranking large datasets according to these ranking functions, even if the datasets exhibit complex correlations or the probability distributions are continuous. The second problem concerns with the stochastic versions of a broad class of combinatorial optimization problems. We observe that the expected value is inadequate in capturing different types of risk-averse or risk-prone behaviors, and instead we consider a more general objective which is to maximize the expected utility of the solution for some given utility function. We present a polynomial time approximation algorithm with additive error ε for any ε > 0, under certain conditions. Our result generalizes and improves several prior results on stochastic shortest path, stochastic spanning tree, and stochastic knapsack. The third is the stochastic matching problem which finds interesting applications in online dating, kidney exchange and online ad assignment. In this problem, the existence of each edge is uncertain and can be only found out by probing the edge. The goal is to design a probing strategy to maximize the expected weight of the matching. We give linear programming based constant-factor approximation algorithms for weighted stochastic matching, which answer an open question raised in prior work

    Scalable Probabilistic Similarity Ranking in Uncertain Databases (Technical Report)

    Get PDF
    This paper introduces a scalable approach for probabilistic top-k similarity ranking on uncertain vector data. Each uncertain object is represented by a set of vector instances that are assumed to be mutually-exclusive. The objective is to rank the uncertain data according to their distance to a reference object. We propose a framework that incrementally computes for each object instance and ranking position, the probability of the object falling at that ranking position. The resulting rank probability distribution can serve as input for several state-of-the-art probabilistic ranking models. Existing approaches compute this probability distribution by applying a dynamic programming approach of quadratic complexity. In this paper we theoretically as well as experimentally show that our framework reduces this to a linear-time complexity while having the same memory requirements, facilitated by incremental accessing of the uncertain vector instances in increasing order of their distance to the reference object. Furthermore, we show how the output of our method can be used to apply probabilistic top-k ranking for the objects, according to different state-of-the-art definitions. We conduct an experimental evaluation on synthetic and real data, which demonstrates the efficiency of our approach

    On Discrimination Discovery and Removal in Ranked Data using Causal Graph

    Full text link
    Predictive models learned from historical data are widely used to help companies and organizations make decisions. However, they may digitally unfairly treat unwanted groups, raising concerns about fairness and discrimination. In this paper, we study the fairness-aware ranking problem which aims to discover discrimination in ranked datasets and reconstruct the fair ranking. Existing methods in fairness-aware ranking are mainly based on statistical parity that cannot measure the true discriminatory effect since discrimination is causal. On the other hand, existing methods in causal-based anti-discrimination learning focus on classification problems and cannot be directly applied to handle the ranked data. To address these limitations, we propose to map the rank position to a continuous score variable that represents the qualification of the candidates. Then, we build a causal graph that consists of both the discrete profile attributes and the continuous score. The path-specific effect technique is extended to the mixed-variable causal graph to identify both direct and indirect discrimination. The relationship between the path-specific effects for the ranked data and those for the binary decision is theoretically analyzed. Finally, algorithms for discovering and removing discrimination from a ranked dataset are developed. Experiments using the real dataset show the effectiveness of our approaches.Comment: 9 page

    Improving Negative Sampling for Word Representation using Self-embedded Features

    Get PDF
    Although the word-popularity based negative sampler has shown superb performance in the skip-gram model, the theoretical motivation behind oversampling popular (non-observed) words as negative samples is still not well understood. In this paper, we start from an investigation of the gradient vanishing issue in the skipgram model without a proper negative sampler. By performing an insightful analysis from the stochastic gradient descent (SGD) learning perspective, we demonstrate that, both theoretically and intuitively, negative samples with larger inner product scores are more informative than those with lower scores for the SGD learner in terms of both convergence rate and accuracy. Understanding this, we propose an alternative sampling algorithm that dynamically selects informative negative samples during each SGD update. More importantly, the proposed sampler accounts for multi-dimensional self-embedded features during the sampling process, which essentially makes it more effective than the original popularity-based (one-dimensional) sampler. Empirical experiments further verify our observations, and show that our fine-grained samplers gain significant improvement over the existing ones without increasing computational complexity.Comment: Accepted in WSDM 201

    Quantifying Aspect Bias in Ordinal Ratings using a Bayesian Approach

    Full text link
    User opinions expressed in the form of ratings can influence an individual's view of an item. However, the true quality of an item is often obfuscated by user biases, and it is not obvious from the observed ratings the importance different users place on different aspects of an item. We propose a probabilistic modeling of the observed aspect ratings to infer (i) each user's aspect bias and (ii) latent intrinsic quality of an item. We model multi-aspect ratings as ordered discrete data and encode the dependency between different aspects by using a latent Gaussian structure. We handle the Gaussian-Categorical non-conjugacy using a stick-breaking formulation coupled with P\'{o}lya-Gamma auxiliary variable augmentation for a simple, fully Bayesian inference. On two real world datasets, we demonstrate the predictive ability of our model and its effectiveness in learning explainable user biases to provide insights towards a more reliable product quality estimation.Comment: Accepted for publication in IJCAI 201

    Zero-Shot Learning by Convex Combination of Semantic Embeddings

    Full text link
    Several recent publications have proposed methods for mapping images into continuous semantic embedding spaces. In some cases the embedding space is trained jointly with the image transformation. In other cases the semantic embedding space is established by an independent natural language processing task, and then the image transformation into that space is learned in a second stage. Proponents of these image embedding systems have stressed their advantages over the traditional \nway{} classification framing of image understanding, particularly in terms of the promise for zero-shot learning -- the ability to correctly annotate images of previously unseen object categories. In this paper, we propose a simple method for constructing an image embedding system from any existing \nway{} image classifier and a semantic word embedding model, which contains the \n class labels in its vocabulary. Our method maps images into the semantic embedding space via convex combination of the class label embedding vectors, and requires no additional training. We show that this simple and direct method confers many of the advantages associated with more complex image embedding schemes, and indeed outperforms state of the art methods on the ImageNet zero-shot learning task
    corecore