808 research outputs found

    Packing and Padding: Coupled Multi-index for Accurate Image Retrieval

    Full text link
    In Bag-of-Words (BoW) based image retrieval, the SIFT visual word has a low discriminative power, so false positive matches occur prevalently. Apart from the information loss during quantization, another cause is that the SIFT feature only describes the local gradient distribution. To address this problem, this paper proposes a coupled Multi-Index (c-MI) framework to perform feature fusion at indexing level. Basically, complementary features are coupled into a multi-dimensional inverted index. Each dimension of c-MI corresponds to one kind of feature, and the retrieval process votes for images similar in both SIFT and other feature spaces. Specifically, we exploit the fusion of local color feature into c-MI. While the precision of visual match is greatly enhanced, we adopt Multiple Assignment to improve recall. The joint cooperation of SIFT and color features significantly reduces the impact of false positive matches. Extensive experiments on several benchmark datasets demonstrate that c-MI improves the retrieval accuracy significantly, while consuming only half of the query time compared to the baseline. Importantly, we show that c-MI is well complementary to many prior techniques. Assembling these methods, we have obtained an mAP of 85.8% and N-S score of 3.85 on Holidays and Ukbench datasets, respectively, which compare favorably with the state-of-the-arts.Comment: 8 pages, 7 figures, 6 tables. Accepted to CVPR 201

    Unsupervised Visual and Textual Information Fusion in Multimedia Retrieval - A Graph-based Point of View

    Full text link
    Multimedia collections are more than ever growing in size and diversity. Effective multimedia retrieval systems are thus critical to access these datasets from the end-user perspective and in a scalable way. We are interested in repositories of image/text multimedia objects and we study multimodal information fusion techniques in the context of content based multimedia information retrieval. We focus on graph based methods which have proven to provide state-of-the-art performances. We particularly examine two of such methods : cross-media similarities and random walk based scores. From a theoretical viewpoint, we propose a unifying graph based framework which encompasses the two aforementioned approaches. Our proposal allows us to highlight the core features one should consider when using a graph based technique for the combination of visual and textual information. We compare cross-media and random walk based results using three different real-world datasets. From a practical standpoint, our extended empirical analysis allow us to provide insights and guidelines about the use of graph based methods for multimodal information fusion in content based multimedia information retrieval.Comment: An extended version of the paper: Visual and Textual Information Fusion in Multimedia Retrieval using Semantic Filtering and Graph based Methods, by J. Ah-Pine, G. Csurka and S. Clinchant, submitted to ACM Transactions on Information System

    Colour-based image retrieval algorithms based on compact colour descriptors and dominant colour-based indexing methods

    Get PDF
    Content based image retrieval (CBIR) is reported as one of the most active research areas in the last two decades, but it is still young. Three CBIR’s performance problem in this study is inaccuracy of image retrieval, high complexity of feature extraction, and degradation of image retrieval after database indexing. This situation led to discrepancies to be applied on limited-resources devices (such as mobile devices). Therefore, the main objective of this thesis is to improve performance of CBIR. Images’ Dominant Colours (DCs) is selected as the key contributor for this purpose due to its compact property and its compatibility with the human visual system. Semantic image retrieval is proposed to solve retrieval inaccuracy problem by concentrating on the images’ objects. The effect of image background is reduced to provide more focus on the object by setting weights to the object and the background DCs. The accuracy improvement ratio is raised up to 50% over the compared methods. Weighting DCs framework is proposed to generalize this technique where it is demonstrated by applying it on many colour descriptors. For reducing high complexity of colour Correlogram in terms of computations and memory space, compact representation of Correlogram is proposed. Additionally, similarity measure of an existing DC-based Correlogram is adapted to improve its accuracy. Both methods are incorporated to produce promising colour descriptor in terms of time and memory space complexity. As a result, the accuracy is increased up to 30% over the existing methods and the memory space is decreased to less than 10% of its original space. Converting the abundance of colours into a few DCs framework is proposed to generalize DCs concept. In addition, two DC-based indexing techniques are proposed to overcome time problem, by using RGB and perceptual LUV colour spaces. Both methods reduce the search space to less than 25% of the database size with preserving the same accuracy
    • …
    corecore