22,059 research outputs found

    Fast and Robust Rank Aggregation against Model Misspecification

    Full text link
    In rank aggregation, preferences from different users are summarized into a total order under the homogeneous data assumption. Thus, model misspecification arises and rank aggregation methods take some noise models into account. However, they all rely on certain noise model assumptions and cannot handle agnostic noises in the real world. In this paper, we propose CoarsenRank, which rectifies the underlying data distribution directly and aligns it to the homogeneous data assumption without involving any noise model. To this end, we define a neighborhood of the data distribution over which Bayesian inference of CoarsenRank is performed, and therefore the resultant posterior enjoys robustness against model misspecification. Further, we derive a tractable closed-form solution for CoarsenRank making it computationally efficient. Experiments on real-world datasets show that CoarsenRank is fast and robust, achieving consistent improvement over baseline methods

    Learning Reputation in an Authorship Network

    Full text link
    The problem of searching for experts in a given academic field is hugely important in both industry and academia. We study exactly this issue with respect to a database of authors and their publications. The idea is to use Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) to perform topic modelling in order to find authors who have worked in a query field. We then construct a coauthorship graph and motivate the use of influence maximisation and a variety of graph centrality measures to obtain a ranked list of experts. The ranked lists are further improved using a Markov Chain-based rank aggregation approach. The complete method is readily scalable to large datasets. To demonstrate the efficacy of the approach we report on an extensive set of computational simulations using the Arnetminer dataset. An improvement in mean average precision is demonstrated over the baseline case of simply using the order of authors found by the topic models

    Matching Natural Language Sentences with Hierarchical Sentence Factorization

    Full text link
    Semantic matching of natural language sentences or identifying the relationship between two sentences is a core research problem underlying many natural language tasks. Depending on whether training data is available, prior research has proposed both unsupervised distance-based schemes and supervised deep learning schemes for sentence matching. However, previous approaches either omit or fail to fully utilize the ordered, hierarchical, and flexible structures of language objects, as well as the interactions between them. In this paper, we propose Hierarchical Sentence Factorization---a technique to factorize a sentence into a hierarchical representation, with the components at each different scale reordered into a "predicate-argument" form. The proposed sentence factorization technique leads to the invention of: 1) a new unsupervised distance metric which calculates the semantic distance between a pair of text snippets by solving a penalized optimal transport problem while preserving the logical relationship of words in the reordered sentences, and 2) new multi-scale deep learning models for supervised semantic training, based on factorized sentence hierarchies. We apply our techniques to text-pair similarity estimation and text-pair relationship classification tasks, based on multiple datasets such as STSbenchmark, the Microsoft Research paraphrase identification (MSRP) dataset, the SICK dataset, etc. Extensive experiments show that the proposed hierarchical sentence factorization can be used to significantly improve the performance of existing unsupervised distance-based metrics as well as multiple supervised deep learning models based on the convolutional neural network (CNN) and long short-term memory (LSTM).Comment: Accepted by WWW 2018, 10 page

    Methods for Ordinal Peer Grading

    Full text link
    MOOCs have the potential to revolutionize higher education with their wide outreach and accessibility, but they require instructors to come up with scalable alternates to traditional student evaluation. Peer grading -- having students assess each other -- is a promising approach to tackling the problem of evaluation at scale, since the number of "graders" naturally scales with the number of students. However, students are not trained in grading, which means that one cannot expect the same level of grading skills as in traditional settings. Drawing on broad evidence that ordinal feedback is easier to provide and more reliable than cardinal feedback, it is therefore desirable to allow peer graders to make ordinal statements (e.g. "project X is better than project Y") and not require them to make cardinal statements (e.g. "project X is a B-"). Thus, in this paper we study the problem of automatically inferring student grades from ordinal peer feedback, as opposed to existing methods that require cardinal peer feedback. We formulate the ordinal peer grading problem as a type of rank aggregation problem, and explore several probabilistic models under which to estimate student grades and grader reliability. We study the applicability of these methods using peer grading data collected from a real class -- with instructor and TA grades as a baseline -- and demonstrate the efficacy of ordinal feedback techniques in comparison to existing cardinal peer grading methods. Finally, we compare these peer-grading techniques to traditional evaluation techniques.Comment: Submitted to KDD 201
    • …
    corecore