807 research outputs found

    Unitary Approximate Message Passing for Sparse Bayesian Learning and Bilinear Recovery

    Get PDF
    Over the past several years, the approximate message passing (AMP) algorithm has been applied to a broad range of problems, including compressed sensing (CS), robust regression, Bayesian estimation, etc. AMP was originally developed for compressed sensing based on the loopy belief propagation (BP). Compared to convex optimization based algorithms, AMP has low complexity and its performance can be rigorously characterized by a scalar state evolution (SE) in the case of a large independent and identically distributed (i.i.d.) (sub-) Gaussian matrix. AMP was then extended to solve general estimation problems with a generalized linear observation model. However, AMP performs poorly on a generic matrix such as non-zero mean, rank-deficient, correlated, or ill-conditioned matrix, resulting in divergence and degraded performance. It was discovered later that applying AMP to a unitary transform of the original model can remarkably enhance the robustness to difficult matrices. This variant is named unitary AMP (UAMP), or formally called UTAMP. In this thesis, leveraging UAMP, we propose UAMP-SBL for sparse signal recovery and Bi-UAMP for bilinear recovery, both of which inherit the low complexity and robustness of UAMP. Sparse Bayesian learning (SBL) is a powerful tool for recovering a sparse signal from noisy measurements, which finds numerous applications in various areas. As a traditional implementation of SBL, e.g., Tipping’s method, involves matrix inversion in each iteration, the computational complexity can be prohibitive for large scale problems. To circumvent this, AMP and its variants have been used as low-complexity solutions. Unfortunately, they will diverge for ‘difficult’ measurement matrices as previously mentioned. In this thesis, leveraging UAMP, a novel SBL algorithm called UAMP-SBL is proposed where UAMP is incorporated into the structured variational message passing (SVMP) to handle the most computationally intensive part of message computations. It is shown that, compared to state-of-the-art AMP based SBL algorithms, the proposed UAMP-SBL is more robust and efficient, leading to remarkably better performance. The bilinear recovery problem has many applications such as dictionary learning, selfcalibration, compressed sensing with matrix uncertainty, etc. Compared to existing nonmessage passing alternates, several AMP based algorithms have been developed to solve bilinear problems. By using UAMP, a more robust and faster approximate inference algorithm for bilinear recovery is proposed in this thesis, which is called Bi-UAMP. With the lifting approach, the original bilinear problem is reformulated as a linear one. Then, variational inference (VI), expectation propagation (EP) and BP are combined with UAMP to implement the approximate inference algorithm Bi-UAMP, where UAMP is adopted for the most computationally intensive part. It is shown that, compared to state-of-the-art bilinear recovery algorithms, the proposed Bi-UAMP is much more robust and faster, and delivers significantly better performance. Recently, UAMP has also been employed for many other applications such as inverse synthetic aperture radar (ISAR) imaging, low-complexity direction of arrival (DOA) estimation, iterative detection for orthogonal time frequency space modulation (OTFS), channel estimation for RIS-Aided MIMO communications, etc. Promising performance was achieved in all of the applications, and more applications of UAMP are expected in the future

    Reconstruction of enhanced ultrasound images from compressed measurements

    Get PDF
    L'intérêt de l'échantillonnage compressé dans l'imagerie ultrasonore a été récemment évalué largement par plusieurs équipes de recherche. Suite aux différentes configurations d'application, il a été démontré que les données RF peuvent être reconstituées à partir d'un faible nombre de mesures et / ou en utilisant un nombre réduit d'émission d'impulsions ultrasonores. Selon le modèle de l'échantillonnage compressé, la résolution des images ultrasonores reconstruites à partir des mesures compressées dépend principalement de trois aspects: la configuration d'acquisition, c.à.d. l'incohérence de la matrice d'échantillonnage, la régularisation de l'image, c.à.d. l'a priori de parcimonie et la technique d'optimisation. Nous nous sommes concentrés principalement sur les deux derniers aspects dans cette thèse. Néanmoins, la résolution spatiale d'image RF, le contraste et le rapport signal sur bruit dépendent de la bande passante limitée du transducteur d'imagerie et du phénomène physique lié à la propagation des ondes ultrasonores. Pour surmonter ces limitations, plusieurs techniques de traitement d'image en fonction de déconvolution ont été proposées pour améliorer les images ultrasonores. Dans cette thèse, nous proposons d'abord un nouveau cadre de travail pour l'imagerie ultrasonore, nommé déconvolution compressée, pour combiner l'échantillonnage compressé et la déconvolution. Exploitant une formulation unifiée du modèle d'acquisition directe, combinant des projections aléatoires et une convolution 2D avec une réponse impulsionnelle spatialement invariante, l'avantage de ce cadre de travail est la réduction du volume de données et l'amélioration de la qualité de l'image. Une méthode d'optimisation basée sur l'algorithme des directions alternées est ensuite proposée pour inverser le modèle linéaire, en incluant deux termes de régularisation exprimant la parcimonie des images RF dans une base donnée et l'hypothèse statistique gaussienne généralisée sur les fonctions de réflectivité des tissus. Nous améliorons les résultats ensuite par la méthode basée sur l'algorithme des directions simultanées. Les deux algorithmes sont évalués sur des données simulées et des données in vivo. Avec les techniques de régularisation, une nouvelle approche basée sur la minimisation alternée est finalement développée pour estimer conjointement les fonctions de réflectivité des tissus et la réponse impulsionnelle. Une investigation préliminaire est effectuée sur des données simulées.The interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. According to the model of compressive sampling, the resolution of reconstructed ultrasound images from compressed measurements mainly depends on three aspects: the acquisition setup, i.e. the incoherence of the sampling matrix, the image regularization, i.e. the sparsity prior, and the optimization technique. We mainly focused on the last two aspects in this thesis. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to Ultrasound wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this thesis, we first propose a novel framework for Ultrasound imaging, named compressive deconvolution, to combine the compressive sampling and deconvolution. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of this framework is the joint data volume reduction and image quality improvement. An optimization method based on the Alternating Direction Method of Multipliers is then proposed to invert the linear model, including two regularization terms expressing the sparsity of the RF images in a given basis and the generalized Gaussian statistical assumption on tissue reflectivity functions. It is improved afterwards by the method based on the Simultaneous Direction Method of Multipliers. Both algorithms are evaluated on simulated and in vivo data. With regularization techniques, a novel approach based on Alternating Minimization is finally developed to jointly estimate the tissue reflectivity function and the point spread function. A preliminary investigation is made on simulated data

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Radar Imaging Based on IEEE 802.11ad Waveform in V2I Communications

    Full text link
    Since most of vehicular radar systems are already exploiting millimeter-wave (mmWave) spectra, it would become much more feasible to implement a joint radar and communication system by extending communication frequencies into the mmWave band. In this paper, an IEEE 802.11ad waveform-based radar imaging technique is proposed for vehicular settings. A roadside unit (RSU) transmits the IEEE 802.11ad waveform to a vehicle for communications while the RSU also listens to the echoes of transmitted waveform to perform inverse synthetic aperture radar (ISAR) imaging. To obtain high-resolution images of the vehicle, the RSU needs to accurately estimate round-trip delays, Doppler shifts, and velocity of vehicle. The proposed ISAR imaging first estimates the round-trip delays using a good correlation property of Golay complementary sequences in the IEEE 802.11ad preamble. The Doppler shifts are then obtained using least square estimation from the echo signals and refined to compensate phase wrapping caused by phase rotation. The velocity of vehicle is determined using an equation of motion and the estimated Doppler shifts. Simulation results verify that the proposed technique is able to form high-resolution ISAR images from point scatterer models of realistic vehicular settings with different viewpoints. The proposed ISAR imaging technique can be used for various vehicular applications, e.g., traffic condition analyses or advanced collision warning systems

    Exploiting Sparse Structures in Source Localization and Tracking

    Get PDF
    This thesis deals with the modeling of structured signals under different sparsity constraints. Many phenomena exhibit an inherent structure that may be exploited when setting up models, examples include audio waves, radar, sonar, and image objects. These structures allow us to model, identify, and classify the processes, enabling parameter estimation for, e.g., identification, localisation, and tracking.In this work, such structures are exploited, with the goal to achieve efficient localisation and tracking of a structured source signal. Specifically, two scenarios are considered. In papers A and B, the aim is to find a sparse subset of a structured signal such that the signal parameters and source locations maybe estimated in an optimal way. For the sparse subset selection, a combinatorial optimization problem is approximately solved by means of convex relaxation, with the results of allowing for different types of a priori information to be incorporated in the optimization. In paper C, a sparse subset of data is provided, and a generative model is used to find the location of an unknown number of jammers in a wireless network, with the jammers’ movement in the network being tracked as additional observations become available

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging

    Get PDF
    The ability to monitor respiratory rate is extremely important for medical treatment, healthcare and fitness sectors. In many situations, mobile methods, which allow users to undertake every day activities, are required. However, current monitoring systems can be obtrusive, requiring users to wear respiration belts or nasal probes. Recent advances in thermographic systems have shrunk their size, weight and cost, to the point where it is possible to create smart-phone based respiration rate monitoring devices that are not affected by lighting conditions. However, mobile thermal imaging is challenged in scenes with high thermal dynamic ranges. This challenge is further amplified by general problems such as motion artifacts and low spatial resolution, leading to unreliable breathing signals. In this paper, we propose a novel and robust approach for respiration tracking which compensates for the negative effects of variations in the ambient temperature and motion artifacts and can accurately extract breathing rates in highly dynamic thermal scenes. It has three main contributions. The first is a novel Optimal Quantization technique which adaptively constructs a color mapping of absolute temperature to improve segmentation, classification and tracking. The second is the Thermal Gradient Flow method that computes thermal gradient magnitude maps to enhance accuracy of the nostril region tracking. Finally, we introduce the Thermal Voxel method to increase the reliability of the captured respiration signals compared to the traditional averaging method. We demonstrate the extreme robustness of our system to track the nostril-region and measure the respiratory rate in high dynamic range scenes.Comment: Vol. 8, No. 10, 1 Oct 2017, Biomedical Optics Express 4480 - Full abstract can be found in this journal article (due to limited word counts of 'arXiv abstract'

    Deep probabilistic methods for improved radar sensor modelling and pose estimation

    Get PDF
    Radar’s ability to sense under adverse conditions and at far-range makes it a valuable alternative to vision and lidar for mobile robotic applications. However, its complex, scene-dependent sensing process and significant noise artefacts makes working with radar challenging. Moving past classical rule-based approaches, which have dominated the literature to date, this thesis investigates deep and data-driven solutions across a range of tasks in robotics. Firstly, a deep approach is developed for mapping raw sensor measurements to a grid-map of occupancy probabilities, outperforming classical filtering approaches by a significant margin. A distribution over the occupancy state is captured, additionally allowing uncertainty in predictions to be identified and managed. The approach is trained entirely using partial labels generated automatically from lidar, without requiring manual labelling. Next, a deep model is proposed for generating stochastic radar measurements from simulated elevation maps. The model is trained by learning the forward and backward processes side-by-side, using a combination of adversarial and cyclical consistency constraints in combination with a partial alignment loss, using labels generated in lidar. By faithfully replicating the radar sensing process, new models can be trained for down-stream tasks, using labels that are readily available in simulation. In this case, segmentation models trained on simulated radar measurements, when deployed in the real world, are shown to approach the performance of a model trained entirely on real-world measurements. Finally, the potential of deep approaches applied to the radar odometry task are explored. A learnt feature space is combined with a classical correlative scan matching procedure and optimised for pose prediction, allowing the proposed method to outperform the previous state-of-the-art by a significant margin. Through a probabilistic consideration the uncertainty in the pose is also successfully characterised. Building upon this success, properties of the Fourier Transform are then utilised to separate the search for translation and angle. It is shown that this decoupled search results in a significant boost to run-time performance, allowing the approach to run in real-time on CPUs and embedded devices, whilst remaining competitive with other radar odometry methods proposed in the literature
    • …
    corecore