22 research outputs found

    A Bijective Census of Nonseparable Planar Maps

    Get PDF
    AbstractBijections are obtained between nonseparable planar maps and two different kinds of trees: description trees and skew ternary trees. A combinatorial relation between the latter and ternary trees allows bijective enumeration and random generation of nonseparable planar maps. The involved bijections take account of the usual combinatorial parameters and give a bijective proof of formulae established by Brown and Tutte. These results, combined with a bijection due to Goulden and West, give a purely combinatorial enumeration of two-stack-sortable permutations

    Restricted non-separable planar maps and some pattern avoiding permutations

    Full text link
    Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, beta(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrimsson in 2009, to show that the number of 2-faces (excluding the root-face) in a map equals the number of occurrences of a certain mesh pattern in the permutations. We further show that this number is also the number of nodes in the corresponding beta(1,0)-tree that are single children with maximum label. Finally, we give asymptotics for some of our enumerative results.Comment: 18 pages, 14 figure

    Enumeration of Stack-Sorting Preimages via a Decomposition Lemma

    Full text link
    We give three applications of a recently-proven "Decomposition Lemma," which allows one to count preimages of certain sets of permutations under West's stack-sorting map ss. We first enumerate the permutation class s−1(Av(231,321))=Av(2341,3241,45231)s^{-1}(\text{Av}(231,321))=\text{Av}(2341,3241,45231), finding a new example of an unbalanced Wilf equivalence. This result is equivalent to the enumeration of permutations sortable by B∘s{\bf B}\circ s, where B{\bf B} is the bubble sort map. We then prove that the sets s−1(Av(231,312))s^{-1}(\text{Av}(231,312)), s−1(Av(132,231))=Av(2341,1342,32‾41,31‾42)s^{-1}(\text{Av}(132,231))=\text{Av}(2341,1342,\underline{32}41,\underline{31}42), and s−1(Av(132,312))=Av(1342,3142,3412,3421‾)s^{-1}(\text{Av}(132,312))=\text{Av}(1342,3142,3412,34\underline{21}) are counted by the so-called "Boolean-Catalan numbers," settling a conjecture of the current author and another conjecture of Hossain. This completes the enumerations of all sets of the form s−1(Av(τ(1),…,τ(r)))s^{-1}(\text{Av}(\tau^{(1)},\ldots,\tau^{(r)})) for {τ(1),…,τ(r)}⊆S3\{\tau^{(1)},\ldots,\tau^{(r)}\}\subseteq S_3 with the exception of the set {321}\{321\}. We also find an explicit formula for ∣s−1(Avn,k(231,312,321))∣|s^{-1}(\text{Av}_{n,k}(231,312,321))|, where Avn,k(231,312,321)\text{Av}_{n,k}(231,312,321) is the set of permutations in Avn(231,312,321)\text{Av}_n(231,312,321) with kk descents. This allows us to prove a conjectured identity involving Catalan numbers and order ideals in Young's lattice.Comment: 20 pages, 4 figures. arXiv admin note: text overlap with arXiv:1903.0913

    Exact enumeration of 1342-avoiding permutations: A close link with labeled trees and planar maps

    Get PDF
    Solving the first nonmonotonic, longer-than-three instance of a classic enumeration problem, we obtain the generating function H(x)H(x) of all 1342-avoiding permutations of length nn as well as an {\em exact} formula for their number Sn(1342)S_n(1342). While achieving this, we bijectively prove that the number of indecomposable 1342-avoiding permutations of length nn equals that of labeled plane trees of a certain type on nn vertices recently enumerated by Cori, Jacquard and Schaeffer, which is in turn known to be equal to the number of rooted bicubic maps enumerated by Tutte in 1963. Moreover, H(x)H(x) turns out to be algebraic, proving the first nonmonotonic, longer-than-three instance of a conjecture of Zeilberger and Noonan. We also prove that Sn(1342)n\sqrt[n]{S_n(1342)} converges to 8, so in particular, limn→∞(Sn(1342)/Sn(1234))=0lim_{n\rightarrow \infty}(S_n(1342)/S_n(1234))=0
    corecore