97,457 research outputs found

    Transverse Meissner Physics of Planar Superconductors with Columnar Pins

    Get PDF
    The statistical mechanics of thermally excited vortex lines with columnar defects can be mapped onto the physics of interacting quantum particles with quenched random disorder in one less dimension. The destruction of the Bose glass phase in Type II superconductors, when the external magnetic field is tilted sufficiently far from the column direction, is described by a poorly understood non-Hermitian quantum phase transition. We present here exact results for this transition in (1+1)-dimensions, obtained by mapping the problem in the hard core limit onto one-dimensional fermions described by a non-Hermitian tight binding model. Both site randomness and the relatively unexplored case of bond randomness are considered. Analysis near the mobility edge and near the band center in the latter case is facilitated by a real space renormalization group procedure used previously for Hermitian quantum problems with quenched randomness in one dimension.Comment: 23 pages, 22 figure

    Strong-disorder renormalization for interacting non-Abelian anyon systems in two dimensions

    Get PDF
    We consider the effect of quenched spatial disorder on systems of interacting, pinned non-Abelian anyons as might arise in disordered Hall samples at filling fractions \nu=5/2 or \nu=12/5. In one spatial dimension, such disordered anyon models have previously been shown to exhibit a hierarchy of infinite randomness phases. Here, we address systems in two spatial dimensions and report on the behavior of Ising and Fibonacci anyons under the numerical strong-disorder renormalization group (SDRG). In order to manage the topology-dependent interactions generated during the flow, we introduce a planar approximation to the SDRG treatment. We characterize this planar approximation by studying the flow of disordered hard-core bosons and the transverse field Ising model, where it successfully reproduces the known infinite randomness critical point with exponent \psi ~ 0.43. Our main conclusion for disordered anyon models in two spatial dimensions is that systems of Ising anyons as well as systems of Fibonacci anyons do not realize infinite randomness phases, but flow back to weaker disorder under the numerical SDRG treatment.Comment: 12 pages, 12 figures, 1 tabl

    Strict Solution Method for Linear Programming Problem with Ellipsoidal Distributions under Fuzziness

    Get PDF
    This paper considers a linear programming problem with ellipsoidal distributions including fuzziness. Since this problem is not well-defined due to randomness and fuzziness, it is hard to solve it directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed model is transformed into the deterministic equivalent problems. Furthermore, since it is difficult to solve the main problem analytically and efficiently due to nonlinear programming, the solution method is constructed introducing an appropriate parameter and performing the equivalent transformations

    Deep Spin-Glass Hysteresis Area Collapse and Scaling in the d=3d=3 ±J\pm J Ising Model

    Full text link
    We investigate the dissipative loss in the ±J\pm J Ising spin glass in three dimensions through the scaling of the hysteresis area, for a maximum magnetic field that is equal to the saturation field. We perform a systematic analysis for the whole range of the bond randomness as a function of the sweep rate, by means of frustration-preserving hard-spin mean field theory. Data collapse within the entirety of the spin-glass phase driven adiabatically (i.e., infinitely-slow field variation) is found, revealing a power-law scaling of the hysteresis area as a function of the antiferromagnetic bond fraction and the temperature. Two dynamic regimes separated by a threshold frequency ωc\omega_c characterize the dependence on the sweep rate of the oscillating field. For ω<ωc\omega < \omega_c, the hysteresis area is equal to its value in the adiabatic limit ω=0\omega = 0, while for ω>ωc\omega > \omega_c it increases with the frequency through another randomness-dependent power law.Comment: 6 pages, 6 figure

    Numerical analysis of the magnetic-field-tuned superconductor-insulator transition in two dimensions

    Full text link
    Ground state of the two-dimensional hard-core-boson model subjected to external magnetic field and quenched random chemical potential is studied numerically. In experiments, magnetic-field-tuned superconductor-insulator transition has already come under through investigation, whereas in computer simulation, only randomness-driven localization (with zero magnetic field) has been studied so far: The external magnetic field brings about a difficulty that the hopping amplitude becomes complex number (through the gauge twist), for which the quantum Monte-Carlo simulation fails. Here, we employ the exact diagonalization method, with which we demonstrate that the model does exhibit field-tuned localization transition at a certain critical magnetic field. At the critical point, we found that the DC conductivity is not universal, but is substantially larger than that of the randomness-driven localization transition at zero magnetic field. Our result supports recent experiment by Markovi'c et al. reporting an increase of the critical conductivity with magnetic field strengthened
    • 

    corecore