33,997 research outputs found

    Distributed Space-Time Coding Based on Adjustable Code Matrices for Cooperative MIMO Relaying Systems

    Full text link
    An adaptive distributed space-time coding (DSTC) scheme is proposed for two-hop cooperative MIMO networks. Linear minimum mean square error (MMSE) receive filters and adjustable code matrices are considered subject to a power constraint with an amplify-and-forward (AF) cooperation strategy. In the proposed adaptive DSTC scheme, an adjustable code matrix obtained by a feedback channel is employed to transform the space-time coded matrix at the relay node. The effects of the limited feedback and the feedback errors are assessed. Linear MMSE expressions are devised to compute the parameters of the adjustable code matrix and the linear receive filters. Stochastic gradient (SG) and least-squares (LS) algorithms are also developed with reduced computational complexity. An upper bound on the pairwise error probability analysis is derived and indicates the advantage of employing the adjustable code matrices at the relay nodes. An alternative optimization algorithm for the adaptive DSTC scheme is also derived in order to eliminate the need for the feedback. The algorithm provides a fully distributed scheme for the adaptive DSTC at the relay node based on the minimization of the error probability. Simulation results show that the proposed algorithms obtain significant performance gains as compared to existing DSTC schemes.Comment: 6 figure

    Error-Correcting Codes for Automatic Control

    Get PDF
    Systems with automatic feedback control may consist of several remote devices, connected only by unreliable communication channels. It is necessary in these conditions to have a method for accurate, real-time state estimation in the presence of channel noise. This problem is addressed, for the case of polynomial-growth-rate state spaces, through a new type of error-correcting code that is online and computationally efficient. This solution establishes a constructive analog, for some applications in estimation and control, of the Shannon coding theorem

    Evolutionary Approaches to Minimizing Network Coding Resources

    Get PDF
    We wish to minimize the resources used for network coding while achieving the desired throughput in a multicast scenario. We employ evolutionary approaches, based on a genetic algorithm, that avoid the computational complexity that makes the problem NP-hard. Our experiments show great improvements over the sub-optimal solutions of prior methods. Our new algorithms improve over our previously proposed algorithm in three ways. First, whereas the previous algorithm can be applied only to acyclic networks, our new method works also with networks with cycles. Second, we enrich the set of components used in the genetic algorithm, which improves the performance. Third, we develop a novel distributed framework. Combining distributed random network coding with our distributed optimization yields a network coding protocol where the resources used for coding are optimized in the setup phase by running our evolutionary algorithm at each node of the network. We demonstrate the effectiveness of our approach by carrying out simulations on a number of different sets of network topologies.Comment: 9 pages, 6 figures, accepted to the 26th Annual IEEE Conference on Computer Communications (INFOCOM 2007

    Tracking Stopping Times Through Noisy Observations

    Full text link
    A novel quickest detection setting is proposed which is a generalization of the well-known Bayesian change-point detection model. Suppose \{(X_i,Y_i)\}_{i\geq 1} is a sequence of pairs of random variables, and that S is a stopping time with respect to \{X_i\}_{i\geq 1}. The problem is to find a stopping time T with respect to \{Y_i\}_{i\geq 1} that optimally tracks S, in the sense that T minimizes the expected reaction delay E(T-S)^+, while keeping the false-alarm probability P(T<S) below a given threshold \alpha \in [0,1]. This problem formulation applies in several areas, such as in communication, detection, forecasting, and quality control. Our results relate to the situation where the X_i's and Y_i's take values in finite alphabets and where S is bounded by some positive integer \kappa. By using elementary methods based on the analysis of the tree structure of stopping times, we exhibit an algorithm that computes the optimal average reaction delays for all \alpha \in [0,1], and constructs the associated optimal stopping times T. Under certain conditions on \{(X_i,Y_i)\}_{i\geq 1} and S, the algorithm running time is polynomial in \kappa.Comment: 19 pages, 4 figures, to appear in IEEE Transactions on Information Theor
    corecore