35,606 research outputs found
On a generalization of iterated and randomized rounding
We give a general method for rounding linear programs that combines the
commonly used iterated rounding and randomized rounding techniques. In
particular, we show that whenever iterated rounding can be applied to a problem
with some slack, there is a randomized procedure that returns an integral
solution that satisfies the guarantees of iterated rounding and also has
concentration properties. We use this to give new results for several classic
problems where iterated rounding has been useful
Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut
The multiway-cut problem is, given a weighted graph and k >= 2 terminal
nodes, to find a minimum-weight set of edges whose removal separates all the
terminals. The problem is NP-hard, and even NP-hard to approximate within
1+delta for some small delta > 0.
Calinescu, Karloff, and Rabani (1998) gave an algorithm with performance
guarantee 3/2-1/k, based on a geometric relaxation of the problem. In this
paper, we give improved randomized rounding schemes for their relaxation,
yielding a 12/11-approximation algorithm for k=3 and a 1.3438-approximation
algorithm in general.
Our approach hinges on the observation that the problem of designing a
randomized rounding scheme for a geometric relaxation is itself a linear
programming problem. The paper explores computational solutions to this
problem, and gives a proof that for a general class of geometric relaxations,
there are always randomized rounding schemes that match the integrality gap.Comment: Conference version in ACM Symposium on Theory of Computing (1999). To
appear in Mathematics of Operations Researc
Randomized Rounding for the Largest Simplex Problem
The maximum volume -simplex problem asks to compute the -dimensional
simplex of maximum volume inside the convex hull of a given set of points
in . We give a deterministic approximation algorithm for this
problem which achieves an approximation ratio of . The problem
is known to be -hard to approximate within a factor of for
some constant . Our algorithm also gives a factor
approximation for the problem of finding the principal submatrix of
a rank positive semidefinite matrix with the largest determinant. We
achieve our approximation by rounding solutions to a generalization of the
-optimal design problem, or, equivalently, the dual of an appropriate
smallest enclosing ellipsoid problem. Our arguments give a short and simple
proof of a restricted invertibility principle for determinants
Virtual Network Embedding Approximations: Leveraging Randomized Rounding
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Virtual Network Embedding Problem (VNEP) captures the essence of many resource allocation problems. In the VNEP, customers request resources in the form of Virtual Networks. An embedding of a virtual network on a shared physical infrastructure is the joint mapping of (virtual) nodes to physical servers together with the mapping of (virtual) edges onto paths in the physical network connecting the respective servers. This work initiates the study of approximation algorithms for the VNEP for general request graphs. Concretely, we study the offline setting with admission control: given multiple requests, the task is to embed the most profitable subset while not exceeding resource capacities. Our approximation is based on the randomized rounding of Linear Programming (LP) solutions. Interestingly, we uncover that the standard LP formulation for the VNEP exhibits an inherent structural deficit when considering general virtual network topologies: its solutions cannot be decomposed into valid embeddings. In turn, focusing on the class of cactus request graphs, we devise a novel LP formulation, whose solutions can be decomposed. Proving performance guarantees of our rounding scheme, we obtain the first approximation algorithm for the VNEP in the resource augmentation model. We propose different types of rounding heuristics and evaluate their performance in an extensive computational study. Our results indicate that good solutions can be achieved even without resource augmentations. Specifically, heuristical rounding achieves 77.2% of the baseline’s profit on average while respecting capacities.BMBF, 01IS12056, Software Campus GrantEC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe
Efficient Transductive Online Learning via Randomized Rounding
Most traditional online learning algorithms are based on variants of mirror
descent or follow-the-leader. In this paper, we present an online algorithm
based on a completely different approach, tailored for transductive settings,
which combines "random playout" and randomized rounding of loss subgradients.
As an application of our approach, we present the first computationally
efficient online algorithm for collaborative filtering with trace-norm
constrained matrices. As a second application, we solve an open question
linking batch learning and transductive online learningComment: To appear in a Festschrift in honor of V.N. Vapnik. Preliminary
version presented in NIPS 201
- …
