1,410 research outputs found

    Randomized Quantization and Source Coding with Constrained Output Distribution

    Full text link
    This paper studies fixed-rate randomized vector quantization under the constraint that the quantizer's output has a given fixed probability distribution. A general representation of randomized quantizers that includes the common models in the literature is introduced via appropriate mixtures of joint probability measures on the product of the source and reproduction alphabets. Using this representation and results from optimal transport theory, the existence of an optimal (minimum distortion) randomized quantizer having a given output distribution is shown under various conditions. For sources with densities and the mean square distortion measure, it is shown that this optimum can be attained by randomizing quantizers having convex codecells. For stationary and memoryless source and output distributions a rate-distortion theorem is proved, providing a single-letter expression for the optimum distortion in the limit of large block-lengths.Comment: To appear in the IEEE Transactions on Information Theor

    Capacity and Random-Coding Exponents for Channel Coding with Side Information

    Full text link
    Capacity formulas and random-coding exponents are derived for a generalized family of Gel'fand-Pinsker coding problems. These exponents yield asymptotic upper bounds on the achievable log probability of error. In our model, information is to be reliably transmitted through a noisy channel with finite input and output alphabets and random state sequence, and the channel is selected by a hypothetical adversary. Partial information about the state sequence is available to the encoder, adversary, and decoder. The design of the transmitter is subject to a cost constraint. Two families of channels are considered: 1) compound discrete memoryless channels (CDMC), and 2) channels with arbitrary memory, subject to an additive cost constraint, or more generally to a hard constraint on the conditional type of the channel output given the input. Both problems are closely connected. The random-coding exponent is achieved using a stacked binning scheme and a maximum penalized mutual information decoder, which may be thought of as an empirical generalized Maximum a Posteriori decoder. For channels with arbitrary memory, the random-coding exponents are larger than their CDMC counterparts. Applications of this study include watermarking, data hiding, communication in presence of partially known interferers, and problems such as broadcast channels, all of which involve the fundamental idea of binning.Comment: to appear in IEEE Transactions on Information Theory, without Appendices G and

    Asymptotic Task-Based Quantization with Application to Massive MIMO

    Get PDF
    Quantizers take part in nearly every digital signal processing system which operates on physical signals. They are commonly designed to accurately represent the underlying signal, regardless of the specific task to be performed on the quantized data. In systems working with high-dimensional signals, such as massive multiple-input multiple-output (MIMO) systems, it is beneficial to utilize low-resolution quantizers, due to cost, power, and memory constraints. In this work we study quantization of high-dimensional inputs, aiming at improving performance under resolution constraints by accounting for the system task in the quantizers design. We focus on the task of recovering a desired signal statistically related to the high-dimensional input, and analyze two quantization approaches: We first consider vector quantization, which is typically computationally infeasible, and characterize the optimal performance achievable with this approach. Next, we focus on practical systems which utilize hardware-limited scalar uniform analog-to-digital converters (ADCs), and design a task-based quantizer under this model. The resulting system accounts for the task by linearly combining the observed signal into a lower dimension prior to quantization. We then apply our proposed technique to channel estimation in massive MIMO networks. Our results demonstrate that a system utilizing low-resolution scalar ADCs can approach the optimal channel estimation performance by properly accounting for the task in the system design
    • …
    corecore