4,407 research outputs found

    Network Density of States

    Full text link
    Spectral analysis connects graph structure to the eigenvalues and eigenvectors of associated matrices. Much of spectral graph theory descends directly from spectral geometry, the study of differentiable manifolds through the spectra of associated differential operators. But the translation from spectral geometry to spectral graph theory has largely focused on results involving only a few extreme eigenvalues and their associated eigenvalues. Unlike in geometry, the study of graphs through the overall distribution of eigenvalues - the spectral density - is largely limited to simple random graph models. The interior of the spectrum of real-world graphs remains largely unexplored, difficult to compute and to interpret. In this paper, we delve into the heart of spectral densities of real-world graphs. We borrow tools developed in condensed matter physics, and add novel adaptations to handle the spectral signatures of common graph motifs. The resulting methods are highly efficient, as we illustrate by computing spectral densities for graphs with over a billion edges on a single compute node. Beyond providing visually compelling fingerprints of graphs, we show how the estimation of spectral densities facilitates the computation of many common centrality measures, and use spectral densities to estimate meaningful information about graph structure that cannot be inferred from the extremal eigenpairs alone.Comment: 10 pages, 7 figure

    Far-Field Compression for Fast Kernel Summation Methods in High Dimensions

    Full text link
    We consider fast kernel summations in high dimensions: given a large set of points in dd dimensions (with d≫3d \gg 3) and a pair-potential function (the {\em kernel} function), we compute a weighted sum of all pairwise kernel interactions for each point in the set. Direct summation is equivalent to a (dense) matrix-vector multiplication and scales quadratically with the number of points. Fast kernel summation algorithms reduce this cost to log-linear or linear complexity. Treecodes and Fast Multipole Methods (FMMs) deliver tremendous speedups by constructing approximate representations of interactions of points that are far from each other. In algebraic terms, these representations correspond to low-rank approximations of blocks of the overall interaction matrix. Existing approaches require an excessive number of kernel evaluations with increasing dd and number of points in the dataset. To address this issue, we use a randomized algebraic approach in which we first sample the rows of a block and then construct its approximate, low-rank interpolative decomposition. We examine the feasibility of this approach theoretically and experimentally. We provide a new theoretical result showing a tighter bound on the reconstruction error from uniformly sampling rows than the existing state-of-the-art. We demonstrate that our sampling approach is competitive with existing (but prohibitively expensive) methods from the literature. We also construct kernel matrices for the Laplacian, Gaussian, and polynomial kernels -- all commonly used in physics and data analysis. We explore the numerical properties of blocks of these matrices, and show that they are amenable to our approach. Depending on the data set, our randomized algorithm can successfully compute low rank approximations in high dimensions. We report results for data sets with ambient dimensions from four to 1,000.Comment: 43 pages, 21 figure

    Approximating spectral densities of large matrices

    Full text link
    In physics, it is sometimes desirable to compute the so-called \emph{Density Of States} (DOS), also known as the \emph{spectral density}, of a real symmetric matrix AA. The spectral density can be viewed as a probability density distribution that measures the likelihood of finding eigenvalues near some point on the real line. The most straightforward way to obtain this density is to compute all eigenvalues of AA. But this approach is generally costly and wasteful, especially for matrices of large dimension. There exists alternative methods that allow us to estimate the spectral density function at much lower cost. The major computational cost of these methods is in multiplying AA with a number of vectors, which makes them appealing for large-scale problems where products of the matrix AA with arbitrary vectors are relatively inexpensive. This paper defines the problem of estimating the spectral density carefully, and discusses how to measure the accuracy of an approximate spectral density. It then surveys a few known methods for estimating the spectral density, and proposes some new variations of existing methods. All methods are discussed from a numerical linear algebra point of view
    • …
    corecore