3 research outputs found

    A Balanced Tree Approach to Construction of Length-Compatible Polar Codes

    Full text link
    From the perspective of tree, we design a length-flexible coding scheme. For an arbitrary code length, we first construct a balanced binary tree (BBT) where the root node represents a transmitted codeword, the leaf nodes represent either active bits or frozen bits, and a parent node is related to its child nodes by a length-adaptive (U+V|V) operation. Both the encoding and the successive cancellation (SC)-based decoding can be implemented over the constructed coding tree. For code construction, we propose a signal-to-noise ratio (SNR)-dependent method and two SNR-independent methods, all of which evaluate the reliabilities of leaf nodes and then select the most reliable leaf nodes as the active nodes. Numerical results demonstrate that our proposed codes can have comparable performance to the 5G polar codes. To reduce the decoding latency, we propose a partitioned successive cancellation (PSC)-based decoding algorithm, which can be implemented over a sub-tree obtained by pruning the coding tree. Numerical results show that the PSC-based decoding can achieve similar performance to the conventional SC-based decoding.Comment: 30 pages, 10 figure

    Partially Coupled Codes for TB-based Transmission

    Full text link
    In this thesis, we mainly investigate the design of partially coupled codes for transport block (TB) based transmission protocol adopted in 4G/5G mobile network standards. In this protocol, an information sequence in a TB is segmented into multiple code blocks (CBs) and each CB is protected by a channel codeword independently. It is inefficient in terms of transmit power and spectrum efficiency because any erroneous CB in a TB leads to the retransmission of the whole TB. An important research problem related to this TB-based transmission is how to improve the TB error rate (TBER) performance so that the number of retransmissions reduces. To tackle this challenge, we present a class of spatial coupling techniques called partial coupling in the TB encoding operation, which has two subclasses: partial information coupled (PIC) and partial parity coupling (PPC). To be specific, the coupling is performed such that a fraction of the information/parity sequence of one component code at the current CB is used as the input of the component encoder at the next CB, leading to improved TBER performance. One of the appealing features of partial coupling (both PIC and PPC) is that the coupling can be applied to any component codes without changing their encoding and decoding architectures, making them compatible with the TB-based transmission protocol. The main body of this thesis consists of two parts. In the first part, we apply both PIC and PPC to turbo codes. We investigate various coupling designs and analysis the performance of the partially coupled turbo codes over the binary erasure channel via density evolution (DE). Both simulation results and DE analysis show that such a class of codes can approach channel capacity with a large blocklength. In the second part, we construct PIC-polar codes. We show that PIC can effectively improve the error performance of finite-length polar codes by utilizing the channel polarization phenomenon. The DE-based performance analysis is also conducted. For both turbo codes and polar codes, we have shown that the partially coupled codes have significant performance gain over their uncoupled counterpart, demonstrating the effectiveness of the partial coupling
    corecore