12,672 research outputs found

    Optimal Algorithms for Non-Smooth Distributed Optimization in Networks

    Full text link
    In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in O(1/t)O(1/\sqrt{t}), the structure of the communication network only impacts a second-order term in O(1/t)O(1/t), where tt is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a d1/4d^{1/4} multiplicative factor of the optimal convergence rate, where dd is the underlying dimension.Comment: 17 page

    Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis

    Full text link
    Recently several methods were proposed for sparse optimization which make careful use of second-order information [10, 28, 16, 3] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here we propose a general framework, which includes slightly modified versions of existing algorithms and also a new algorithm, which uses limited memory BFGS Hessian approximations, and provide a novel global convergence rate analysis, which covers methods that solve subproblems via coordinate descent

    Adaptive Regret Minimization in Bounded-Memory Games

    Get PDF
    Online learning algorithms that minimize regret provide strong guarantees in situations that involve repeatedly making decisions in an uncertain environment, e.g. a driver deciding what route to drive to work every day. While regret minimization has been extensively studied in repeated games, we study regret minimization for a richer class of games called bounded memory games. In each round of a two-player bounded memory-m game, both players simultaneously play an action, observe an outcome and receive a reward. The reward may depend on the last m outcomes as well as the actions of the players in the current round. The standard notion of regret for repeated games is no longer suitable because actions and rewards can depend on the history of play. To account for this generality, we introduce the notion of k-adaptive regret, which compares the reward obtained by playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary with the reward obtained by the best expert in hindsight against the same adversary. Roughly, a hypothetical k-adaptive adversary adapts her strategy to the defender's actions exactly as the real adversary would within each window of k rounds. Our definition is parametrized by a set of experts, which can include both fixed and adaptive defender strategies. We investigate the inherent complexity of and design algorithms for adaptive regret minimization in bounded memory games of perfect and imperfect information. We prove a hardness result showing that, with imperfect information, any k-adaptive regret minimizing algorithm (with fixed strategies as experts) must be inefficient unless NP=RP even when playing against an oblivious adversary. In contrast, for bounded memory games of perfect and imperfect information we present approximate 0-adaptive regret minimization algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper

    An Asynchronous Parallel Randomized Kaczmarz Algorithm

    Full text link
    We describe an asynchronous parallel variant of the randomized Kaczmarz (RK) algorithm for solving the linear system Ax=bAx=b. The analysis shows linear convergence and indicates that nearly linear speedup can be expected if the number of processors is bounded by a multiple of the number of rows in AA

    Proactive Caching for Energy-Efficiency in Wireless Networks: A Markov Decision Process Approach

    Full text link
    Content caching in wireless networks provides a substantial opportunity to trade off low cost memory storage with energy consumption, yet finding the optimal causal policy with low computational complexity remains a challenge. This paper models the Joint Pushing and Caching (JPC) problem as a Markov Decision Process (MDP) and provides a solution to determine the optimal randomized policy. A novel approach to decouple the influence from buffer occupancy and user requests is proposed to turn the high-dimensional optimization problem into three low-dimensional ones. Furthermore, a non-iterative algorithm to solve one of the sub-problems is presented, exploiting a structural property we found as \textit{generalized monotonicity}, and hence significantly reduces the computational complexity. The result attains close performance in comparison with theoretical bounds from non-practical policies, while benefiting from higher time efficiency than the unadapted MDP solution.Comment: 6 pages, 6 figures, submitted to IEEE International Conference on Communications 201
    corecore