5,186 research outputs found
Expressing Bayesian Fusion as a Product of Distributions: Application to Randomized Hough Transform
Data fusion is a common issue of mobile robotics, computer assisted
medical diagnosis or behavioral control of simulated character for instance. However
data sources are often noisy, opinion for experts are not known with absolute
precision, and motor commands do not act in the same exact manner on the environment.
In these cases, classic logic fails to manage efficiently the fusion process.
Confronting different knowledge in an uncertain environment can therefore be adequately
formalized in the bayesian framework.
Besides, bayesian fusion can be expensive in terms of memory usage and processing
time. This paper precisely aims at expressing any bayesian fusion process as a
product of probability distributions in order to reduce its complexity. We first study
both direct and inverse fusion schemes. We show that contrary to direct models,
inverse local models need a specific prior in order to allow the fusion to be computed
as a product. We therefore propose to add a consistency variable to each local
model and we show that these additional variables allow the use of a product of the
local distributions in order to compute the global probability distribution over the
fused variable. Finally, we take the example of the Randomized Hough Transform.
We rewrite it in the bayesian framework, considering that it is a fusion process
to extract lines from couples of dots in a picture. As expected, we can find back
the expression of the Randomized Hough Transform from the literature with the
appropriate assumptions
Automatic Detection of Calibration Grids in Time-of-Flight Images
It is convenient to calibrate time-of-flight cameras by established methods,
using images of a chequerboard pattern. The low resolution of the amplitude
image, however, makes it difficult to detect the board reliably. Heuristic
detection methods, based on connected image-components, perform very poorly on
this data. An alternative, geometrically-principled method is introduced here,
based on the Hough transform. The projection of a chequerboard is represented
by two pencils of lines, which are identified as oriented clusters in the
gradient-data of the image. A projective Hough transform is applied to each of
the two clusters, in axis-aligned coordinates. The range of each transform is
properly bounded, because the corresponding gradient vectors are approximately
parallel. Each of the two transforms contains a series of collinear peaks; one
for every line in the given pencil. This pattern is easily detected, by
sweeping a dual line through the transform. The proposed Hough-based method is
compared to the standard OpenCV detection routine, by application to several
hundred time-of-flight images. It is shown that the new method detects
significantly more calibration boards, over a greater variety of poses, without
any overall loss of accuracy. This conclusion is based on an analysis of both
geometric and photometric error.Comment: 11 pages, 11 figures, 1 tabl
- …
