3,723 research outputs found

    Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

    Full text link
    We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves a similar convergence rate in duality gap as the full Frank-Wolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this yields an online algorithm that has the same low iteration complexity as primal stochastic subgradient methods. However, unlike stochastic subgradient methods, the block-coordinate Frank-Wolfe algorithm allows us to compute the optimal step-size and yields a computable duality gap guarantee. Our experiments indicate that this simple algorithm outperforms competing structural SVM solvers.Comment: Appears in Proceedings of the 30th International Conference on Machine Learning (ICML 2013). 9 pages main text + 22 pages appendix. Changes from v3 to v4: 1) Re-organized appendix; improved & clarified duality gap proofs; re-drew all plots; 2) Changed convention for Cf definition; 3) Added weighted averaging experiments + convergence results; 4) Clarified main text and relationship with appendi

    Hyperparameter Importance Across Datasets

    Full text link
    With the advent of automated machine learning, automated hyperparameter optimization methods are by now routinely used in data mining. However, this progress is not yet matched by equal progress on automatic analyses that yield information beyond performance-optimizing hyperparameter settings. In this work, we aim to answer the following two questions: Given an algorithm, what are generally its most important hyperparameters, and what are typically good values for these? We present methodology and a framework to answer these questions based on meta-learning across many datasets. We apply this methodology using the experimental meta-data available on OpenML to determine the most important hyperparameters of support vector machines, random forests and Adaboost, and to infer priors for all their hyperparameters. The results, obtained fully automatically, provide a quantitative basis to focus efforts in both manual algorithm design and in automated hyperparameter optimization. The conducted experiments confirm that the hyperparameters selected by the proposed method are indeed the most important ones and that the obtained priors also lead to statistically significant improvements in hyperparameter optimization.Comment: \c{opyright} 2018. Copyright is held by the owner/author(s). Publication rights licensed to ACM. This is the author's version of the work. It is posted here for your personal use, not for redistribution. The definitive Version of Record was published in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Minin

    Feature Selection for Linear SVM with Provable Guarantees

    Full text link
    We give two provably accurate feature-selection techniques for the linear SVM. The algorithms run in deterministic and randomized time respectively. Our algorithms can be used in an unsupervised or supervised setting. The supervised approach is based on sampling features from support vectors. We prove that the margin in the feature space is preserved to within ϵ\epsilon-relative error of the margin in the full feature space in the worst-case. In the unsupervised setting, we also provide worst-case guarantees of the radius of the minimum enclosing ball, thereby ensuring comparable generalization as in the full feature space and resolving an open problem posed in Dasgupta et al. We present extensive experiments on real-world datasets to support our theory and to demonstrate that our method is competitive and often better than prior state-of-the-art, for which there are no known provable guarantees.Comment: Appearing in Proceedings of 18th AISTATS, JMLR W&CP, vol 38, 201
    • …
    corecore