17,649 research outputs found

    Random-Walk Term Weighting for Improved Text Classification

    Get PDF

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Fixed versus Dynamic Co-Occurrence Windows in TextRank Term Weights for Information Retrieval

    Full text link
    TextRank is a variant of PageRank typically used in graphs that represent documents, and where vertices denote terms and edges denote relations between terms. Quite often the relation between terms is simple term co-occurrence within a fixed window of k terms. The output of TextRank when applied iteratively is a score for each vertex, i.e. a term weight, that can be used for information retrieval (IR) just like conventional term frequency based term weights. So far, when computing TextRank term weights over co- occurrence graphs, the window of term co-occurrence is al- ways ?xed. This work departs from this, and considers dy- namically adjusted windows of term co-occurrence that fol- low the document structure on a sentence- and paragraph- level. The resulting TextRank term weights are used in a ranking function that re-ranks 1000 initially returned search results in order to improve the precision of the ranking. Ex- periments with two IR collections show that adjusting the vicinity of term co-occurrence when computing TextRank term weights can lead to gains in early precision

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    Glasgow University at TRECVID 2006

    Get PDF
    In the first part of this paper we describe our experiments in the automatic and interactive search tasks of TRECVID 2006. We submitted five fully automatic runs, including a text baseline, two runs based on visual features, and two runs that combine textual and visual features in a graph model. For the interactive search, we have implemented a new video search interface with relevance feedback facilities, based on both textual and visual features. The second part is concerned with our approach to the high-level feature extraction task, based on textual information extracted from speech recogniser and machine translation outputs. They were aligned with shots and associated with high-level feature references. A list of significant words was created for each feature, and it was in turn utilised for identification of a feature during the evaluation

    Node Embedding over Temporal Graphs

    Full text link
    In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient
    corecore