12,567 research outputs found

    The Best Trail Algorithm for Assisted Navigation of Web Sites

    Full text link
    We present an algorithm called the Best Trail Algorithm, which helps solve the hypertext navigation problem by automating the construction of memex-like trails through the corpus. The algorithm performs a probabilistic best-first expansion of a set of navigation trees to find relevant and compact trails. We describe the implementation of the algorithm, scoring methods for trails, filtering algorithms and a new metric called \emph{potential gain} which measures the potential of a page for future navigation opportunities.Comment: 11 pages, 11 figure

    N-Grams Assisted Long Web Search Query Optimization

    Get PDF
    Commercial search engines do not return optimal search results when the query is a long or multi-topic one [1]. Long queries are used extensively. While the creator of the long query would most likely use natural language to describe the query, it contains extra information. This information dilutes the results of a web search, and hence decreases the performance as well as quality of the results returned. Kumaran et al. [22] showed that shorter queries extracted from longer user generated queries are more effective for ad-hoc retrieval. Hence reducing these queries by removing extra terms, the quality of the search results can be improved. There are numerous approaches used to address this shortfall. Our approach evaluates various versions of the query, thus trying to find the optimal one. This variation is achieved by reducing the query length using a combination of n-grams assisted query selection as well as a random keyword combination generator. We look at existing approaches and try to improve upon them. We propose a hybrid model that tries to address the shortfalls of an existing technique by incorporating established methods along with new ideas. We use the existing models and plug in information with the help of n-grams as well as randomization to improve the overall performance while keeping any overhead calculations in check

    Towards Question-based Recommender Systems

    Get PDF
    Conversational and question-based recommender systems have gained increasing attention in recent years, with users enabled to converse with the system and better control recommendations. Nevertheless, research in the field is still limited, compared to traditional recommender systems. In this work, we propose a novel Question-based recommendation method, Qrec, to assist users to find items interactively, by answering automatically constructed and algorithmically chosen questions. Previous conversational recommender systems ask users to express their preferences over items or item facets. Our model, instead, asks users to express their preferences over descriptive item features. The model is first trained offline by a novel matrix factorization algorithm, and then iteratively updates the user and item latent factors online by a closed-form solution based on the user answers. Meanwhile, our model infers the underlying user belief and preferences over items to learn an optimal question-asking strategy by using Generalized Binary Search, so as to ask a sequence of questions to the user. Our experimental results demonstrate that our proposed matrix factorization model outperforms the traditional Probabilistic Matrix Factorization model. Further, our proposed Qrec model can greatly improve the performance of state-of-the-art baselines, and it is also effective in the case of cold-start user and item recommendations.Comment: accepted by SIGIR 202
    • …
    corecore