3,668 research outputs found

    The matroid secretary problem for minor-closed classes and random matroids

    Full text link
    We prove that for every proper minor-closed class MM of matroids representable over a prime field, there exists a constant-competitive matroid secretary algorithm for the matroids in MM. This result relies on the extremely powerful matroid minor structure theory being developed by Geelen, Gerards and Whittle. We also note that for asymptotically almost all matroids, the matroid secretary algorithm that selects a random basis, ignoring weights, is (2+o(1))(2+o(1))-competitive. In fact, assuming the conjecture that almost all matroids are paving, there is a (1+o(1))(1+o(1))-competitive algorithm for almost all matroids.Comment: 15 pages, 0 figure

    Counting matroids in minor-closed classes

    Full text link
    A flat cover is a collection of flats identifying the non-bases of a matroid. We introduce the notion of cover complexity, the minimal size of such a flat cover, as a measure for the complexity of a matroid, and present bounds on the number of matroids on nn elements whose cover complexity is bounded. We apply cover complexity to show that the class of matroids without an NN-minor is asymptotically small in case NN is one of the sparse paving matroids U2,kU_{2,k}, U3,6U_{3,6}, P6P_6, Q6Q_6, or R6R_6, thus confirming a few special cases of a conjecture due to Mayhew, Newman, Welsh, and Whittle. On the other hand, we show a lower bound on the number of matroids without M(K4)M(K_4)-minor which asymptoticaly matches the best known lower bound on the number of all matroids, due to Knuth.Comment: 13 pages, 3 figure

    Advances on Matroid Secretary Problems: Free Order Model and Laminar Case

    Get PDF
    The most well-known conjecture in the context of matroid secretary problems claims the existence of a constant-factor approximation applicable to any matroid. Whereas this conjecture remains open, modified forms of it were shown to be true, when assuming that the assignment of weights to the secretaries is not adversarial but uniformly random (Soto [SODA 2011], Oveis Gharan and Vondr\'ak [ESA 2011]). However, so far, there was no variant of the matroid secretary problem with adversarial weight assignment for which a constant-factor approximation was found. We address this point by presenting a 9-approximation for the \emph{free order model}, a model suggested shortly after the introduction of the matroid secretary problem, and for which no constant-factor approximation was known so far. The free order model is a relaxed version of the original matroid secretary problem, with the only difference that one can choose the order in which secretaries are interviewed. Furthermore, we consider the classical matroid secretary problem for the special case of laminar matroids. Only recently, a constant-factor approximation has been found for this case, using a clever but rather involved method and analysis (Im and Wang, [SODA 2011]) that leads to a 16000/3-approximation. This is arguably the most involved special case of the matroid secretary problem for which a constant-factor approximation is known. We present a considerably simpler and stronger 33e14.123\sqrt{3}e\approx 14.12-approximation, based on reducing the problem to a matroid secretary problem on a partition matroid

    Enumerating Low Rank Matroids and their Asymptotic Probability of Occurrence

    Get PDF
    This paper shows the attractive enumerative relations between matroids of low rank. It differs from past work in that, rather than attempting to examine the numbers of non-isomorphic matroids as proposed by Crapo [4], it looks directly at the number of matroids and then extends to their non-isomorphic counterparts. We give the (heretofore unknown) numbers for matroids on at most eight elements. Furthermore, we consider a random collection of r-sets of an n-set and examine the probability that these satisfy the matroid basis exchange axioms. The asymptotic behavior of this probability shows interesting characteristics. The r = 2 case corresponds to a problem in random graphs

    Correlation bounds for fields and matroids

    Full text link
    Let GG be a finite connected graph, and let TT be a spanning tree of GG chosen uniformly at random. The work of Kirchhoff on electrical networks can be used to show that the events e1Te_1 \in T and e2Te_2 \in T are negatively correlated for any distinct edges e1e_1 and e2e_2. What can be said for such events when the underlying matroid is not necessarily graphic? We use Hodge theory for matroids to bound the correlation between the events eBe \in B, where BB is a randomly chosen basis of a matroid. As an application, we prove Mason's conjecture that the number of kk-element independent sets of a matroid forms an ultra-log-concave sequence in kk.Comment: 16 pages. Supersedes arXiv:1804.0307
    corecore