1,089 research outputs found

    Random Linear Fountain Code with Improved Decoding Success Probability

    Full text link
    In this paper we study the problem of increasing the decoding success probability of random linear fountain code over GF(2) for small packet lengths used in delay-intolerant applications such as multimedia streaming. Such code over GF(2) are attractive as they have lower decoding complexity than codes over larger field size, but suffer from high transmission redundancy. In our proposed coding scheme we construct a codeword which is not a linear combination of any codewords previously transmitted to mitigate such transmission redundancy. We then note the observation that the probability of receiving a linearly dependent codeword is highest when the receiver has received k-1 linearly independent codewords. We propose using the BlockACK frame so that the codeword received after k-1 linearly independent codeword is always linearly independent, this reduces the expected redundancy by a factor of three.Comment: This paper appears in: Communications (APCC), 2016 22nd Asia-Pacific Conference o

    Doped Fountain Coding for Minimum Delay Data Collection in Circular Networks

    Full text link
    This paper studies decentralized, Fountain and network-coding based strategies for facilitating data collection in circular wireless sensor networks, which rely on the stochastic diversity of data storage. The goal is to allow for a reduced delay collection by a data collector who accesses the network at a random position and random time. Data dissemination is performed by a set of relays which form a circular route to exchange source packets. The storage nodes within the transmission range of the route's relays linearly combine and store overheard relay transmissions using random decentralized strategies. An intelligent data collector first collects a minimum set of coded packets from a subset of storage nodes in its proximity, which might be sufficient for recovering the original packets and, by using a message-passing decoder, attempts recovering all original source packets from this set. Whenever the decoder stalls, the source packet which restarts decoding is polled/doped from its original source node. The random-walk-based analysis of the decoding/doping process furnishes the collection delay analysis with a prediction on the number of required doped packets. The number of doped packets can be surprisingly small when employed with an Ideal Soliton code degree distribution and, hence, the doping strategy may have the least collection delay when the density of source nodes is sufficiently large. Furthermore, we demonstrate that network coding makes dissemination more efficient at the expense of a larger collection delay. Not surprisingly, a circular network allows for a significantly more (analytically and otherwise) tractable strategies relative to a network whose model is a random geometric graph

    Zigzag Decodable Fountain Codes

    Full text link
    This paper proposes a fountain coding system which has lower space decoding complexity and lower decoding erasure rate than the Raptor coding systems. The main idea of the proposed fountain code is employing shift and exclusive OR to generate the output packets. This technique is known as the zigzag decodable code, which is efficiently decoded by the zigzag decoder. In other words, we propose a fountain code based on the zigzag decodable code in this paper. Moreover, we analyze the overhead for the received packets, decoding erasure rate, decoding complexity, and asymptotic overhead of the proposed fountain code. As the result, we show that the proposed fountain code outperforms the Raptor codes in terms of the overhead and decoding erasure rate. Simulation results show that the proposed fountain coding system outperforms Raptor coding system in terms of the overhead and the space decoding complexity.Comment: 11 pages, 15 figures, submitted to IEICETransactions, Oct. 201
    • …
    corecore