19,864 research outputs found

    Classifying Unstable and Stable Walking Patterns Using Electroencephalography Signals and Machine Learning Algorithms

    Get PDF
    Analyzing unstable gait patterns from Electroencephalography (EEG) signals is vital to develop real-time brain-computer interface (BCI) systems to prevent falls and associated injuries. This study investigates the feasibility of classification algorithms to detect walking instability utilizing EEG signals. A 64-channel Brain Vision EEG system was used to acquire EEG signals from 13 healthy adults. Participants performed walking trials for four different stable and unstable conditions: (i) normal walking, (ii) normal walking with medial-lateral perturbation (MLP), (iii) normal walking with dual-tasking (Stroop), (iv) normal walking with center of mass visual feedback. Digital biomarkers were extracted using wavelet energy and entropies from the EEG signals. Algorithms like the ChronoNet, SVM, Random Forest, gradient boosting and recurrent neural networks (LSTM) could classify with 67 to 82% accuracy. The classification results show that it is possible to accurately classify different gait patterns (from stable to unstable) using EEG-based digital biomarkers. This study develops various machine-learning-based classification models using EEG datasets with potential applications in detecting unsteady gait neural signals and intervening by preventing falls and injuries

    Anomalous pattern based clustering of mental tasks with subject independent learning – some preliminary results

    Get PDF
    In this paper we describe a new method for EEG signal classification in which the classification of one subject’s EEG signals is based on features learnt from another subject. This method applies to the power spectrum density data and assigns class-dependent information weights to individual features. The informative features appear to be rather similar among different subjects, thus supporting the view that there are subject independent general brain patterns for the same mental task. Classification is done via clustering using the intelligent k-means algorithm with the most informative features from a different subject. We experimentally compare our method with others.</jats:p

    Automatic Response Assessment in Regions of Language Cortex in Epilepsy Patients Using ECoG-based Functional Mapping and Machine Learning

    Full text link
    Accurate localization of brain regions responsible for language and cognitive functions in Epilepsy patients should be carefully determined prior to surgery. Electrocorticography (ECoG)-based Real Time Functional Mapping (RTFM) has been shown to be a safer alternative to the electrical cortical stimulation mapping (ESM), which is currently the clinical/gold standard. Conventional methods for analyzing RTFM signals are based on statistical comparison of signal power at certain frequency bands. Compared to gold standard (ESM), they have limited accuracies when assessing channel responses. In this study, we address the accuracy limitation of the current RTFM signal estimation methods by analyzing the full frequency spectrum of the signal and replacing signal power estimation methods with machine learning algorithms, specifically random forest (RF), as a proof of concept. We train RF with power spectral density of the time-series RTFM signal in supervised learning framework where ground truth labels are obtained from the ESM. Results obtained from RTFM of six adult patients in a strictly controlled experimental setup reveal the state of the art detection accuracy of ≈78%\approx 78\% for the language comprehension task, an improvement of 23%23\% over the conventional RTFM estimation method. To the best of our knowledge, this is the first study exploring the use of machine learning approaches for determining RTFM signal characteristics, and using the whole-frequency band for better region localization. Our results demonstrate the feasibility of machine learning based RTFM signal analysis method over the full spectrum to be a clinical routine in the near future.Comment: This paper will appear in the Proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC) 201

    Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals

    Full text link
    An electroencephalography (EEG) based Brain Computer Interface (BCI) enables people to communicate with the outside world by interpreting the EEG signals of their brains to interact with devices such as wheelchairs and intelligent robots. More specifically, motor imagery EEG (MI-EEG), which reflects a subjects active intent, is attracting increasing attention for a variety of BCI applications. Accurate classification of MI-EEG signals while essential for effective operation of BCI systems, is challenging due to the significant noise inherent in the signals and the lack of informative correlation between the signals and brain activities. In this paper, we propose a novel deep neural network based learning framework that affords perceptive insights into the relationship between the MI-EEG data and brain activities. We design a joint convolutional recurrent neural network that simultaneously learns robust high-level feature presentations through low-dimensional dense embeddings from raw MI-EEG signals. We also employ an Autoencoder layer to eliminate various artifacts such as background activities. The proposed approach has been evaluated extensively on a large- scale public MI-EEG dataset and a limited but easy-to-deploy dataset collected in our lab. The results show that our approach outperforms a series of baselines and the competitive state-of-the- art methods, yielding a classification accuracy of 95.53%. The applicability of our proposed approach is further demonstrated with a practical BCI system for typing.Comment: 10 page

    Automatic generation of hardware Tree Classifiers

    Full text link
    Machine Learning is growing in popularity and spreading across different fields for various applications. Due to this trend, machine learning algorithms use different hardware platforms and are being experimented to obtain high test accuracy and throughput. FPGAs are well-suited hardware platform for machine learning because of its re-programmability and lower power consumption. Programming using FPGAs for machine learning algorithms requires substantial engineering time and effort compared to software implementation. We propose a software assisted design flow to program FPGA for machine learning algorithms using our hardware library. The hardware library is highly parameterized and it accommodates Tree Classifiers. As of now, our library consists of the components required to implement decision trees and random forests. The whole automation is wrapped around using a python script which takes you from the first step of having a dataset and design choices to the last step of having a hardware descriptive code for the trained machine learning model
    • …
    corecore