276 research outputs found

    The evolution of the cover time

    Full text link
    The cover time of a graph is a celebrated example of a parameter that is easy to approximate using a randomized algorithm, but for which no constant factor deterministic polynomial time approximation is known. A breakthrough due to Kahn, Kim, Lovasz and Vu yielded a (log log n)^2 polynomial time approximation. We refine this upper bound, and show that the resulting bound is sharp and explicitly computable in random graphs. Cooper and Frieze showed that the cover time of the largest component of the Erdos-Renyi random graph G(n,c/n) in the supercritical regime with c>1 fixed, is asymptotic to f(c) n \log^2 n, where f(c) tends to 1 as c tends to 1. However, our new bound implies that the cover time for the critical Erdos-Renyi random graph G(n,1/n) has order n, and shows how the cover time evolves from the critical window to the supercritical phase. Our general estimate also yields the order of the cover time for a variety of other concrete graphs, including critical percolation clusters on the Hamming hypercube {0,1}^n, on high-girth expanders, and on tori Z_n^d for fixed large d. For the graphs we consider, our results show that the blanket time, introduced by Winkler and Zuckerman, is within a constant factor of the cover time. Finally, we prove that for any connected graph, adding an edge can increase the cover time by at most a factor of 4.Comment: 14 pages, to appear in CP

    Deterministic rendezvous, treasure hunts and strongly universal exploration sequences

    Get PDF
    We obtain several improved solutions for the deterministic rendezvous problem in general undirected graphs. Our solutions answer several problems left open by Dessmark et al. We also introduce an interesting variant of the rendezvous problem which we call the deterministic treasure hunt problem. Both the rendezvous and the treasure hunt problems motivate the study of universal traversal sequences and universal exploration sequences with some strengthened properties. We call such sequences strongly universal traversal (exploration) sequences. We give an explicit construction of strongly universal exploration sequences. The existence of strongly universal traversal sequences, as well as the solution of the most difficult variant of the deterministic treasure hunt problem, are left as intriguing open problems.

    Tight bounds for undirected graph exploration with pebbles and multiple agents

    Full text link
    We study the problem of deterministically exploring an undirected and initially unknown graph with nn vertices either by a single agent equipped with a set of pebbles, or by a set of collaborating agents. The vertices of the graph are unlabeled and cannot be distinguished by the agents, but the edges incident to a vertex have locally distinct labels. The graph is explored when all vertices have been visited by at least one agent. In this setting, it is known that for a single agent without pebbles Θ(logn)\Theta(\log n) bits of memory are necessary and sufficient to explore any graph with at most nn vertices. We are interested in how the memory requirement decreases as the agent may mark vertices by dropping and retrieving distinguishable pebbles, or when multiple agents jointly explore the graph. We give tight results for both questions showing that for a single agent with constant memory Θ(loglogn)\Theta(\log \log n) pebbles are necessary and sufficient for exploration. We further prove that the same bound holds for the number of collaborating agents needed for exploration. For the upper bound, we devise an algorithm for a single agent with constant memory that explores any nn-vertex graph using O(loglogn)\mathcal{O}(\log \log n) pebbles, even when nn is unknown. The algorithm terminates after polynomial time and returns to the starting vertex. Since an additional agent is at least as powerful as a pebble, this implies that O(loglogn)\mathcal{O}(\log \log n) agents with constant memory can explore any nn-vertex graph. For the lower bound, we show that the number of agents needed for exploring any graph of size nn is already Ω(loglogn)\Omega(\log \log n) when we allow each agent to have at most O(logn1ε)\mathcal{O}( \log n ^{1-\varepsilon}) bits of memory for any ε>0\varepsilon>0. This also implies that a single agent with sublogarithmic memory needs Θ(loglogn)\Theta(\log \log n) pebbles to explore any nn-vertex graph
    corecore