19 research outputs found

    A Note on Non-Degenerate Integer Programs with Small Sub-Determinants

    Full text link
    The intention of this note is two-fold. First, we study integer optimization problems in standard form defined by AZm×nA \in\mathbb{Z}^{m\times{}n} and present an algorithm to solve such problems in polynomial-time provided that both the largest absolute value of an entry in AA and mm are constant. Then, this is applied to solve integer programs in inequality form in polynomial-time, where the absolute values of all maximal sub-determinants of AA lie between 11 and a constant

    Finding Short Paths on Polytopes by the Shadow Vertex Algorithm

    Full text link
    We show that the shadow vertex algorithm can be used to compute a short path between a given pair of vertices of a polytope P = {x : Ax \leq b} along the edges of P, where A \in R^{m \times n} is a real-valued matrix. Both, the length of the path and the running time of the algorithm, are polynomial in m, n, and a parameter 1/delta that is a measure for the flatness of the vertices of P. For integer matrices A \in Z^{m \times n} we show a connection between delta and the largest absolute value Delta of any sub-determinant of A, yielding a bound of O(Delta^4 m n^4) for the length of the computed path. This bound is expressed in the same parameter Delta as the recent non-constructive bound of O(Delta^2 n^4 \log (n Delta)) by Bonifas et al. For the special case of totally unimodular matrices, the length of the computed path simplifies to O(m n^4), which significantly improves the previously best known constructive bound of O(m^{16} n^3 \log^3(mn)) by Dyer and Frieze

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than ndn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation
    corecore