102,615 research outputs found

    Scaling Limits for Minimal and Random Spanning Trees in Two Dimensions

    Full text link
    A general formulation is presented for continuum scaling limits of stochastic spanning trees. A spanning tree is expressed in this limit through a consistent collection of subtrees, which includes a tree for every finite set of endpoints in Rd\R^d. Tightness of the distribution, as δ→0\delta \to 0, is established for the following two-dimensional examples: the uniformly random spanning tree on δZ2\delta \Z^2, the minimal spanning tree on δZ2\delta \Z^2 (with random edge lengths), and the Euclidean minimal spanning tree on a Poisson process of points in R2\R^2 with density δ−2\delta^{-2}. In each case, sample trees are proven to have the following properties, with probability one with respect to any of the limiting measures: i) there is a single route to infinity (as was known for δ>0\delta > 0), ii) the tree branches are given by curves which are regular in the sense of H\"older continuity, iii) the branches are also rough, in the sense that their Hausdorff dimension exceeds one, iv) there is a random dense subset of R2\R^2, of dimension strictly between one and two, on the complement of which (and only there) the spanning subtrees are unique with continuous dependence on the endpoints, v) branching occurs at countably many points in R2\R^2, and vi) the branching numbers are uniformly bounded. The results include tightness for the loop erased random walk (LERW) in two dimensions. The proofs proceed through the derivation of scale-invariant power bounds on the probabilities of repeated crossings of annuli.Comment: Revised; 54 pages, 6 figures (LaTex

    Spanning Trees in Random Satisfiability Problems

    Full text link
    Working with tree graphs is always easier than with loopy ones and spanning trees are the closest tree-like structures to a given graph. We find a correspondence between the solutions of random K-satisfiability problem and those of spanning trees in the associated factor graph. We introduce a modified survey propagation algorithm which returns null edges of the factor graph and helps us to find satisfiable spanning trees. This allows us to study organization of satisfiable spanning trees in the space spanned by spanning trees.Comment: 12 pages, 5 figures, published versio

    Random subtrees of complete graphs

    Full text link
    We study the asymptotic behavior of four statistics associated with subtrees of complete graphs: the uniform probability pnp_n that a random subtree is a spanning tree of KnK_n, the weighted probability qnq_n (where the probability a subtree is chosen is proportional to the number of edges in the subtree) that a random subtree spans and the two expectations associated with these two probabilities. We find pnp_n and qnq_n both approach e−e−1≈.692e^{-e^{-1}}\approx .692, while both expectations approach the size of a spanning tree, i.e., a random subtree of KnK_n has approximately n−1n-1 edges

    On the length of a random minimum spanning tree

    Full text link
    We study the expected value of the length LnL_n of the minimum spanning tree of the complete graph KnK_n when each edge ee is given an independent uniform [0,1][0,1] edge weight. We sharpen the result of Frieze \cite{F1} that \lim_{n\to\infty}\E(L_n)=\z(3) and show that \E(L_n)=\z(3)+\frac{c_1}{n}+\frac{c_2+o(1)}{n^{4/3}} where c1,c2c_1,c_2 are explicitly defined constants.Comment: Added next term and two co-author
    • …
    corecore