13 research outputs found

    Collaborative Group Learning

    Full text link
    Collaborative learning has successfully applied knowledge transfer to guide a pool of small student networks towards robust local minima. However, previous approaches typically struggle with drastically aggravated student homogenization when the number of students rises. In this paper, we propose Collaborative Group Learning, an efficient framework that aims to diversify the feature representation and conduct an effective regularization. Intuitively, similar to the human group study mechanism, we induce students to learn and exchange different parts of course knowledge as collaborative groups. First, each student is established by randomly routing on a modular neural network, which facilitates flexible knowledge communication between students due to random levels of representation sharing and branching. Second, to resist the student homogenization, students first compose diverse feature sets by exploiting the inductive bias from sub-sets of training data, and then aggregate and distill different complementary knowledge by imitating a random sub-group of students at each time step. Overall, the above mechanisms are beneficial for maximizing the student population to further improve the model generalization without sacrificing computational efficiency. Empirical evaluations on both image and text tasks indicate that our method significantly outperforms various state-of-the-art collaborative approaches whilst enhancing computational efficiency.Comment: Accepted by AAAI 2021; Camera ready versio

    OvA-INN: Continual Learning with Invertible Neural Networks

    Full text link
    In the field of Continual Learning, the objective is to learn several tasks one after the other without access to the data from previous tasks. Several solutions have been proposed to tackle this problem but they usually assume that the user knows which of the tasks to perform at test time on a particular sample, or rely on small samples from previous data and most of them suffer of a substantial drop in accuracy when updated with batches of only one class at a time. In this article, we propose a new method, OvA-INN, which is able to learn one class at a time and without storing any of the previous data. To achieve this, for each class, we train a specific Invertible Neural Network to extract the relevant features to compute the likelihood on this class. At test time, we can predict the class of a sample by identifying the network which predicted the highest likelihood. With this method, we show that we can take advantage of pretrained models by stacking an Invertible Network on top of a feature extractor. This way, we are able to outperform state-of-the-art approaches that rely on features learning for the Continual Learning of MNIST and CIFAR-100 datasets. In our experiments, we reach 72% accuracy on CIFAR-100 after training our model one class at a time.Comment: to be published in IJCNN 202

    iTAML: An Incremental Task-Agnostic Meta-learning Approach

    Full text link
    Humans can continuously learn new knowledge as their experience grows. In contrast, previous learning in deep neural networks can quickly fade out when they are trained on a new task. In this paper, we hypothesize this problem can be avoided by learning a set of generalized parameters, that are neither specific to old nor new tasks. In this pursuit, we introduce a novel meta-learning approach that seeks to maintain an equilibrium between all the encountered tasks. This is ensured by a new meta-update rule which avoids catastrophic forgetting. In comparison to previous meta-learning techniques, our approach is task-agnostic. When presented with a continuum of data, our model automatically identifies the task and quickly adapts to it with just a single update. We perform extensive experiments on five datasets in a class-incremental setting, leading to significant improvements over the state of the art methods (e.g., a 21.3% boost on CIFAR100 with 10 incremental tasks). Specifically, on large-scale datasets that generally prove difficult cases for incremental learning, our approach delivers absolute gains as high as 19.1% and 7.4% on ImageNet and MS-Celeb datasets, respectively.Comment: Accepted to CVPR 202

    IF2Net: Innately Forgetting-Free Networks for Continual Learning

    Full text link
    Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge. Motivated by the characteristics of neural networks, in which information is stored in weights on connections, we investigated how to design an Innately Forgetting-Free Network (IF2Net) for continual learning context. This study proposed a straightforward yet effective learning paradigm by ingeniously keeping the weights relative to each seen task untouched before and after learning a new task. We first presented the novel representation-level learning on task sequences with random weights. This technique refers to tweaking the drifted representations caused by randomization back to their separate task-optimal working states, but the involved weights are frozen and reused (opposite to well-known layer-wise updates of weights). Then, sequential decision-making without forgetting can be achieved by projecting the output weight updates into the parsimonious orthogonal space, making the adaptations not disturb old knowledge while maintaining model plasticity. IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time by integrating the respective strengths of randomization and orthogonalization. We validated the effectiveness of our approach in the extensive theoretical analysis and empirical study.Comment: 16 pages, 8 figures. Under revie
    corecore