912 research outputs found

    Cross layer interaction for IP centric video applications in MIMO broadband wireless networks

    Get PDF

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Distributed 3D-Beam Reforming for Hovering-Tolerant UAVs Communication over Coexistence: A Deep-Q Learning for Intelligent Space-Air-Ground Integrated Networks

    Full text link
    In this paper, we present a novel distributed UAVs beam reforming approach to dynamically form and reform a space-selective beam path in addressing the coexistence with satellite and terrestrial communications. Despite the unique advantage to support wider coverage in UAV-enabled cellular communications, the challenges reside in the array responses' sensitivity to random rotational motion and the hovering nature of the UAVs. A model-free reinforcement learning (RL) based unified UAV beam selection and tracking approach is presented to effectively realize the dynamic distributed and collaborative beamforming. The combined impact of the UAVs' hovering and rotational motions is considered while addressing the impairment due to the interference from the orbiting satellites and neighboring networks. The main objectives of this work are two-fold: first, to acquire the channel awareness to uncover its impairments; second, to overcome the beam distortion to meet the quality of service (QoS) requirements. To overcome the impact of the interference and to maximize the beamforming gain, we define and apply a new optimal UAV selection algorithm based on the brute force criteria. Results demonstrate that the detrimental effects of the channel fading and the interference from the orbiting satellites and neighboring networks can be overcome using the proposed approach. Subsequently, an RL algorithm based on Deep Q-Network (DQN) is developed for real-time beam tracking. By augmenting the system with the impairments due to hovering and rotational motion, we show that the proposed DQN algorithm can reform the beam in real-time with negligible error. It is demonstrated that the proposed DQN algorithm attains an exceptional performance improvement. We show that it requires a few iterations only for fine-tuning its parameters without observing any plateaus irrespective of the hovering tolerance

    Impact and modeling of phase noise in mmW beamforming systems

    Get PDF
    Abstract. Due to the exponential growth of wireless communication, mobile communication applications require more bandwidth available in higher operating frequencies. High centre frequency makes the systems sensitive for phase variations caused by the phase noise (PN) of the imperfect local oscillators (LOs) used in wireless transceivers. Moreover, wide bandwidth also makes the faster phase variations of the phase noise spectra have an impact on the overall system performance by reducing effective signal-to-noise-ratio. These fast variations seen in the high offset frequencies in the phase noise spectra are typically ignored in the communication systems because the traditional system bandwidths are in order of megahertz, or in maximum few gigahertz. In mmW frequencies, i.e., at 30–300 GHz, the transceivers are typically using multiple antenna elements to achieve the required link range by highly directional beams. Often so-called phased arrays are used to implement the multi-antenna transceiver, where the beamforming is mostly performed in the analog domain by digitally controllable mmW phase shifters. For generating multiple beams from the same transceivers, more than one phased array is typically used in the same platform. The phased arrays often share a single LO, for multiple antenna elements. A typical LO generation architecture is containing a base clock, phased-locked loop (PLL), and some frequency multipliers to achieve the target mmW operating frequency. In multi-array systems, the LO signal can be divided into phased arrays in multiple domains, i.e., the arrays can have an independent clock, and a shared clock, but independent PLLs, shared PLL, or even the final mmW LO can be shared. In different architectures, the phase noise has different behavior, and it can have an impact for example on the beamforming accuracy. This thesis focuses on the effects of phase noise on milimeter-wave (mmW) beamforming systems to study different LO routing architectures. We mainly focus on LO architecture with multiple phased arrays that intend to make a common beamformer and their impact on overall system-level phase noise performance. The specific focus is given to the behavior of the wideband phase noise. The phase noise is modeled by using baseband equivalent models where a gaussian phase noise source is filtered by a filter modeling the equivalent phase noise spectra. The parameterization of the model is based on commercial LO phase noise spectra. The behavior is studied in different LO schemes in single-beam and multi-beam scenarios by using simple examples. The simulations are mostly carried out by using continuous-wave signals, but also the single-carrier modulated QAM waveform is demonstrated. The simulations are performed in MATLAB

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions
    • …
    corecore