75,656 research outputs found

    Colouring and breaking sticks: random distributions and heterogeneous clustering

    Full text link
    We begin by reviewing some probabilistic results about the Dirichlet Process and its close relatives, focussing on their implications for statistical modelling and analysis. We then introduce a class of simple mixture models in which clusters are of different `colours', with statistical characteristics that are constant within colours, but different between colours. Thus cluster identities are exchangeable only within colours. The basic form of our model is a variant on the familiar Dirichlet process, and we find that much of the standard modelling and computational machinery associated with the Dirichlet process may be readily adapted to our generalisation. The methodology is illustrated with an application to the partially-parametric clustering of gene expression profiles.Comment: 26 pages, 3 figures. Chapter 13 of "Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman" (Editors N.H. Bingham and C.M. Goldie), Cambridge University Press, 201

    A new family of Markov branching trees: the alpha-gamma model

    Full text link
    We introduce a simple tree growth process that gives rise to a new two-parameter family of discrete fragmentation trees that extends Ford's alpha model to multifurcating trees and includes the trees obtained by uniform sampling from Duquesne and Le Gall's stable continuum random tree. We call these new trees the alpha-gamma trees. In this paper, we obtain their splitting rules, dislocation measures both in ranked order and in sized-biased order, and we study their limiting behaviour.Comment: 23 pages, 1 figur

    Entwined Paths, Difference Equations and the Dirac Equation

    Get PDF
    Entwined space-time paths are bound pairs of trajectories which are traversed in opposite directions with respect to macroscopic time. In this paper we show that ensembles of entwined paths on a discrete space-time lattice are simply described by coupled difference equations which are discrete versions of the Dirac equation. There is no analytic continuation, explicit or forced, involved in this description. The entwined paths are `self-quantizing'. We also show that simple classical stochastic processes that generate the difference equations as ensemble averages are stable numerically and converge at a rate governed by the details of the stochastic process. This result establishes the Dirac equation in one dimension as a phenomenological equation describing an underlying classical stochastic process in the same sense that the Diffusion and Telegraph equations are phenomenological descriptions of stochastic processes.Comment: 15 pages, 5 figures Replacement 11/02 contains minor editorial change

    Single camera pose estimation using Bayesian filtering and Kinect motion priors

    Full text link
    Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.Comment: 25 pages, Technical report, related to Burke and Lasenby, AMDO 2014 conference paper. Code sample: https://github.com/mgb45/SignerBodyPose Video: https://www.youtube.com/watch?v=dJMTSo7-uF

    Metric Construction, Stopping Times and Path Coupling

    Full text link
    In this paper we examine the importance of the choice of metric in path coupling, and the relationship of this to \emph{stopping time analysis}. We give strong evidence that stopping time analysis is no more powerful than standard path coupling. In particular, we prove a stronger theorem for path coupling with stopping times, using a metric which allows us to restrict analysis to standard one-step path coupling. This approach provides insight for the design of non-standard metrics giving improvements in the analysis of specific problems. We give illustrative applications to hypergraph independent sets and SAT instances, hypergraph colourings and colourings of bipartite graphs.Comment: 21 pages, revised version includes statement and proof of general stopping times theorem (section 2.2), and additonal remarks in section

    Deterministic counting of graph colourings using sequences of subgraphs

    Full text link
    In this paper we propose a deterministic algorithm for approximately counting the kk-colourings of sparse random graphs G(n,d/n)G(n,d/n). In particular, our algorithm computes in polynomial time a (1±n−Ω(1))(1\pm n^{-\Omega(1)})approximation of the logarithm of the number of kk-colourings of G(n,d/n)G(n,d/n) for k≥(2+ϵ)dk\geq (2+\epsilon) d with high probability over the graph instances. Our algorithm is related to the algorithms of A. Bandyopadhyay et al. in SODA '06, and A. Montanari et al. in SODA '06, i.e. it uses {\em spatial correlation decay} to compute {\em deterministically} marginals of {\em Gibbs distribution}. We develop a scheme whose accuracy depends on {\em non-reconstruction} of the colourings of G(n,d/n)G(n,d/n), rather than {\em uniqueness} that are required in previous works. This leaves open the possibility for our schema to be sufficiently accurate even for k<dk<d. The set up for establishing correlation decay is as follows: Given G(n,d/n)G(n,d/n), we alter the graph structure in some specific region Λ\Lambda of the graph by deleting edges between vertices of Λ\Lambda. Then we show that the effect of this change on the marginals of Gibbs distribution, diminishes as we move away from Λ\Lambda. Our approach is novel and suggests a new context for the study of deterministic counting algorithms

    A three-dimensional lattice gas model for amphiphilic fluid dynamics

    Full text link
    We describe a three-dimensional hydrodynamic lattice-gas model of amphiphilic fluids. This model of the non-equilibrium properties of oil-water-surfactant systems, which is a non-trivial extension of an earlier two-dimensional realisation due to Boghosian, Coveney and Emerton [Boghosian, Coveney, and Emerton 1996, Proc. Roy. Soc. A 452, 1221-1250], can be studied effectively only when it is implemented using high-performance computing and visualisation techniques. We describe essential aspects of the model's theoretical basis and computer implementation, and report on the phenomenological properties of the model which confirm that it correctly captures binary oil-water and surfactant-water behaviour, as well as the complex phase behaviour of ternary amphiphilic fluids.Comment: 34 pages, 13 figures, high resolution figures available on reques
    • …
    corecore