27 research outputs found

    Repulsion dynamics for uniform Pareto front approximation in multi-objective optimization problems

    Full text link
    Scalarization allows to solve a multi-objective optimization problem by solving many single-objective sub-problems, uniquely determined by some parameters. In this work, we propose several adaptive strategies to select such parameters in order to obtain a uniform approximation of the Pareto front. This is done by introducing a heuristic dynamics where the parameters interact through a binary repulsive potential. The approach aims to minimize the associated energy potential which is used to quantify the diversity of the computed solutions. A stochastic component is also added to overcome non-optimal energy configurations. Numerical experiments show the validity of the proposed approach for bi- and tri-objectives problems with different Pareto front geometries

    Stochastic optimization methods for the simultaneous control of parameter-dependent systems

    Full text link
    We address the application of stochastic optimization methods for the simultaneous control of parameter-dependent systems. In particular, we focus on the classical Stochastic Gradient Descent (SGD) approach of Robbins and Monro, and on the recently developed Continuous Stochastic Gradient (CSG) algorithm. We consider the problem of computing simultaneous controls through the minimization of a cost functional defined as the superposition of individual costs for each realization of the system. We compare the performances of these stochastic approaches, in terms of their computational complexity, with those of the more classical Gradient Descent (GD) and Conjugate Gradient (CG) algorithms, and we discuss the advantages and disadvantages of each methodology. In agreement with well-established results in the machine learning context, we show how the SGD and CSG algorithms can significantly reduce the computational burden when treating control problems depending on a large amount of parameters. This is corroborated by numerical experiments

    A consensus-based global optimization method for high dimensional machine learning problems

    Full text link
    We improve recently introduced consensus-based optimization method, proposed in [R. Pinnau, C. Totzeck, O. Tse and S. Martin, Math. Models Methods Appl. Sci., 27(01):183--204, 2017], which is a gradient-free optimization method for general non-convex functions. We first replace the isotropic geometric Brownian motion by the component-wise one, thus removing the dimensionality dependence of the drift rate, making the method more competitive for high dimensional optimization problems. Secondly, we utilize the random mini-batch ideas to reduce the computational cost of calculating the weighted average which the individual particles tend to relax toward. For its mean-field limit--a nonlinear Fokker-Planck equation--we prove, in both time continuous and semi-discrete settings, that the convergence of the method, which is exponential in time, is guaranteed with parameter constraints {\it independent} of the dimensionality. We also conduct numerical tests to high dimensional problems to check the success rate of the method
    corecore