6 research outputs found

    Algebraic and Combinatorial Methods in Computational Complexity

    Get PDF
    At its core, much of Computational Complexity is concerned with combinatorial objects and structures. But it has often proven true that the best way to prove things about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The PCP characterization of NP and the Agrawal-Kayal-Saxena polynomial-time primality test are two prominent examples. Recently, there have been some works going in the opposite direction, giving alternative combinatorial proofs for results that were originally proved algebraically. These alternative proofs can yield important improvements because they are closer to the underlying problems and avoid the losses in passing to the algebraic setting. A prominent example is Dinur's proof of the PCP Theorem via gap amplification which yielded short PCPs with only a polylogarithmic length blowup (which had been the focus of significant research effort up to that point). We see here (and in a number of recent works) an exciting interplay between algebraic and combinatorial techniques. This seminar aims to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic and combinatorial methods in a variety of settings

    Sparse multivariate polynomial interpolation in the basis of Schubert polynomials

    Full text link
    Schubert polynomials were discovered by A. Lascoux and M. Sch\"utzenberger in the study of cohomology rings of flag manifolds in 1980's. These polynomials generalize Schur polynomials, and form a linear basis of multivariate polynomials. In 2003, Lenart and Sottile introduced skew Schubert polynomials, which generalize skew Schur polynomials, and expand in the Schubert basis with the generalized Littlewood-Richardson coefficients. In this paper we initiate the study of these two families of polynomials from the perspective of computational complexity theory. We first observe that skew Schubert polynomials, and therefore Schubert polynomials, are in \CountP (when evaluating on non-negative integral inputs) and \VNP. Our main result is a deterministic algorithm that computes the expansion of a polynomial ff of degree dd in Z[x1,…,xn]\Z[x_1, \dots, x_n] in the basis of Schubert polynomials, assuming an oracle computing Schubert polynomials. This algorithm runs in time polynomial in nn, dd, and the bit size of the expansion. This generalizes, and derandomizes, the sparse interpolation algorithm of symmetric polynomials in the Schur basis by Barvinok and Fomin (Advances in Applied Mathematics, 18(3):271--285). In fact, our interpolation algorithm is general enough to accommodate any linear basis satisfying certain natural properties. Applications of the above results include a new algorithm that computes the generalized Littlewood-Richardson coefficients.Comment: 20 pages; some typos correcte

    Random arithmetic formulas can be reconstructed efficiently

    Full text link
    Informally stated, we present here a randomized algorithm that given black-box access to the polynomial f computed by an unknown/hidden arithmetic formula φ reconstructs, on the average, an equivalent or smaller formula φ̌ in time polynomial in the size of its output φ̌. Specifically, we consider arithmetic formulas wherein the underlying tree is a complete binary tree, the leaf nodes are labeled by affine forms (i.e., degree one polynomials) over the input variables and where the internal nodes consist of alternating layers of addition and multiplication gates. We call these alternating normal form (ANF) formulas. If a polynomial f can be computed by an arithmetic formula μ of size s, it can also be computed by an ANF formula φ, possibly of slightly larger size s O(1). Our algorithm gets as input black-box access to the output polynomial f (i.e., for any point x in the domain, it can query the black box and obtain f(x) in one step) of a random ANF formula φ of size s (wherein the coefficients of the affine forms in the leaf nodes of φ are chosen independently and uniformly at random from a large enough subset of the underlying field). With high probability (over the choice of coefficients in the leaf nodes), the algorithm efficiently (i.e., in time s O(1)) computes an ANF formula φ̌ of size s computing f. This then is the strongest model of arithmetic computation for which a reconstruction algorithm is presently known, albeit efficient in a distributional sense rather than in the worst case. © 2014 Springer Basel
    corecore