630,052 research outputs found
Redundancy Allocation of Partitioned Linear Block Codes
Most memories suffer from both permanent defects and intermittent random
errors. The partitioned linear block codes (PLBC) were proposed by Heegard to
efficiently mask stuck-at defects and correct random errors. The PLBC have two
separate redundancy parts for defects and random errors. In this paper, we
investigate the allocation of redundancy between these two parts. The optimal
redundancy allocation will be investigated using simulations and the simulation
results show that the PLBC can significantly reduce the probability of decoding
failure in memory with defects. In addition, we will derive the upper bound on
the probability of decoding failure of PLBC and estimate the optimal redundancy
allocation using this upper bound. The estimated redundancy allocation matches
the optimal redundancy allocation well.Comment: 5 pages, 2 figures, to appear in IEEE International Symposium on
Information Theory (ISIT), Jul. 201
5G green cellular networks considering power allocation schemes
It is important to assess the effect of transmit power allocation schemes on
the energy consumption on random cellular networks. The energy efficiency of 5G
green cellular networks with average and water-filling power allocation schemes
is studied in this paper. Based on the proposed interference and achievable
rate model, an energy efficiency model is proposed for MIMO random cellular
networks. Furthermore, the energy efficiency with average and water-filling
power allocation schemes are presented, respectively. Numerical results
indicate that the maximum limits of energy efficiency are always there for MIMO
random cellular networks with different intensity ratios of mobile stations
(MSs) to base stations (BSs) and channel conditions. Compared with the average
power allocation scheme, the water-filling scheme is shown to improve the
energy efficiency of MIMO random cellular networks when channel state
information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure
Lotteries in student assignment: An equivalence result
This paper formally examines two competing methods of conducting a lottery in assigning students to schools, motivated by the design of the centralized high school student assignment system in New York City. The main result of the paper is that a single and multiple lottery mechanism are equivalent for the problem of allocating students to schools in which students have strict preferences and the schools are indifferent. In proving this result, a new approach is introduced, that simplifies and unifies all the known equivalence results in the house allocation literature. Along the way, two new mechanisms---Partitioned Random Priority and Partitioned Random Endowment---are introduced for the house allocation problem. These mechanisms generalize widely studied mechanisms for the house allocation problem and may be appropriate for the many-to-one setting such as the school choice problem.Matching, random assignment
Balanced Allocation on Graphs: A Random Walk Approach
In this paper we propose algorithms for allocating sequential balls into
bins that are interconnected as a -regular -vertex graph , where
can be any integer.Let be a given positive integer. In each round
, , ball picks a node of uniformly at random and
performs a non-backtracking random walk of length from the chosen node.Then
it allocates itself on one of the visited nodes with minimum load (ties are
broken uniformly at random). Suppose that has a sufficiently large girth
and . Then we establish an upper bound for the maximum number
of balls at any bin after allocating balls by the algorithm, called {\it
maximum load}, in terms of with high probability. We also show that the
upper bound is at most an factor above the lower bound that is
proved for the algorithm. In particular, we show that if we set , for every constant , and
has girth at least , then the maximum load attained by the
algorithm is bounded by with high probability.Finally, we
slightly modify the algorithm to have similar results for balanced allocation
on -regular graph with and sufficiently large girth
Optimal Resource Allocation in Random Networks with Transportation Bandwidths
We apply statistical physics to study the task of resource allocation in
random sparse networks with limited bandwidths for the transportation of
resources along the links. Useful algorithms are obtained from recursive
relations. Bottlenecks emerge when the bandwidths are small, causing an
increase in the fraction of idle links. For a given total bandwidth per node,
the efficiency of allocation increases with the network connectivity. In the
high connectivity limit, we find a phase transition at a critical bandwidth,
above which clusters of balanced nodes appear, characterised by a profile of
homogenized resource allocation similar to the Maxwell's construction.Comment: 28 pages, 11 figure
- …
