630,052 research outputs found

    Redundancy Allocation of Partitioned Linear Block Codes

    Full text link
    Most memories suffer from both permanent defects and intermittent random errors. The partitioned linear block codes (PLBC) were proposed by Heegard to efficiently mask stuck-at defects and correct random errors. The PLBC have two separate redundancy parts for defects and random errors. In this paper, we investigate the allocation of redundancy between these two parts. The optimal redundancy allocation will be investigated using simulations and the simulation results show that the PLBC can significantly reduce the probability of decoding failure in memory with defects. In addition, we will derive the upper bound on the probability of decoding failure of PLBC and estimate the optimal redundancy allocation using this upper bound. The estimated redundancy allocation matches the optimal redundancy allocation well.Comment: 5 pages, 2 figures, to appear in IEEE International Symposium on Information Theory (ISIT), Jul. 201

    5G green cellular networks considering power allocation schemes

    Full text link
    It is important to assess the effect of transmit power allocation schemes on the energy consumption on random cellular networks. The energy efficiency of 5G green cellular networks with average and water-filling power allocation schemes is studied in this paper. Based on the proposed interference and achievable rate model, an energy efficiency model is proposed for MIMO random cellular networks. Furthermore, the energy efficiency with average and water-filling power allocation schemes are presented, respectively. Numerical results indicate that the maximum limits of energy efficiency are always there for MIMO random cellular networks with different intensity ratios of mobile stations (MSs) to base stations (BSs) and channel conditions. Compared with the average power allocation scheme, the water-filling scheme is shown to improve the energy efficiency of MIMO random cellular networks when channel state information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure

    Lotteries in student assignment: An equivalence result

    Get PDF
    This paper formally examines two competing methods of conducting a lottery in assigning students to schools, motivated by the design of the centralized high school student assignment system in New York City. The main result of the paper is that a single and multiple lottery mechanism are equivalent for the problem of allocating students to schools in which students have strict preferences and the schools are indifferent. In proving this result, a new approach is introduced, that simplifies and unifies all the known equivalence results in the house allocation literature. Along the way, two new mechanisms---Partitioned Random Priority and Partitioned Random Endowment---are introduced for the house allocation problem. These mechanisms generalize widely studied mechanisms for the house allocation problem and may be appropriate for the many-to-one setting such as the school choice problem.Matching, random assignment

    Balanced Allocation on Graphs: A Random Walk Approach

    Full text link
    In this paper we propose algorithms for allocating nn sequential balls into nn bins that are interconnected as a dd-regular nn-vertex graph GG, where d3d\ge3 can be any integer.Let ll be a given positive integer. In each round tt, 1tn1\le t\le n, ball tt picks a node of GG uniformly at random and performs a non-backtracking random walk of length ll from the chosen node.Then it allocates itself on one of the visited nodes with minimum load (ties are broken uniformly at random). Suppose that GG has a sufficiently large girth and d=ω(logn)d=\omega(\log n). Then we establish an upper bound for the maximum number of balls at any bin after allocating nn balls by the algorithm, called {\it maximum load}, in terms of ll with high probability. We also show that the upper bound is at most an O(loglogn)O(\log\log n) factor above the lower bound that is proved for the algorithm. In particular, we show that if we set l=(logn)1+ϵ2l=\lfloor(\log n)^{\frac{1+\epsilon}{2}}\rfloor, for every constant ϵ(0,1)\epsilon\in (0, 1), and GG has girth at least ω(l)\omega(l), then the maximum load attained by the algorithm is bounded by O(1/ϵ)O(1/\epsilon) with high probability.Finally, we slightly modify the algorithm to have similar results for balanced allocation on dd-regular graph with d[3,O(logn)]d\in[3, O(\log n)] and sufficiently large girth

    Optimal Resource Allocation in Random Networks with Transportation Bandwidths

    Full text link
    We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Useful algorithms are obtained from recursive relations. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterised by a profile of homogenized resource allocation similar to the Maxwell's construction.Comment: 28 pages, 11 figure
    corecore