401 research outputs found

    Proof of a conjecture on induced subgraphs of Ramsey graphs

    Full text link
    An n-vertex graph is called C-Ramsey if it has no clique or independent set of size C log n. All known constructions of Ramsey graphs involve randomness in an essential way, and there is an ongoing line of research towards showing that in fact all Ramsey graphs must obey certain "richness" properties characteristic of random graphs. More than 25 years ago, Erd\H{o}s, Faudree and S\'{o}s conjectured that in any C-Ramsey graph there are Ω(n5/2)\Omega\left(n^{5/2}\right) induced subgraphs, no pair of which have the same numbers of vertices and edges. Improving on earlier results of Alon, Balogh, Kostochka and Samotij, in this paper we prove this conjecture

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.
    corecore