6,782 research outputs found

    An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles

    Full text link
    The Lovasz Local Lemma is a seminal result in probabilistic combinatorics. It gives a sufficient condition on a probability space and a collection of events for the existence of an outcome that simultaneously avoids all of those events. Finding such an outcome by an efficient algorithm has been an active research topic for decades. Breakthrough work of Moser and Tardos (2009) presented an efficient algorithm for a general setting primarily characterized by a product structure on the probability space. In this work we present an efficient algorithm for a much more general setting. Our main assumption is that there exist certain functions, called resampling oracles, that can be invoked to address the undesired occurrence of the events. We show that, in all scenarios to which the original Lovasz Local Lemma applies, there exist resampling oracles, although they are not necessarily efficient. Nevertheless, for essentially all known applications of the Lovasz Local Lemma and its generalizations, we have designed efficient resampling oracles. As applications of these techniques, we present new results for packings of Latin transversals, rainbow matchings and rainbow spanning trees.Comment: 47 page

    Truncated Schwinger-Dyson Equations and Gauge Covariance in QED3

    Full text link
    We study the Landau-Khalatnikov-Fradkin transformations (LKFT) in momentum space for the dynamically generated mass function in QED3. Starting from the Landau gauge results in the rainbow approximation, we construct solutions in other covariant gauges. We confirm that the chiral condensate is gauge invariant as the structure of the LKFT predicts. We also check that the gauge dependence of the constituent fermion mass is considerably reduced as compared to the one obtained directly by solving SDE.Comment: 17 pages, 11 figures. v3. Improved and Expanded. To appear in Few Body System

    Covering graphs by monochromatic trees and Helly-type results for hypergraphs

    Full text link
    How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given rr-edge-coloured graph GG? These problems were introduced in the 1960s and were intensively studied by various researchers over the last 50 years. In this paper, we establish a connection between this problem and the following natural Helly-type question in hypergraphs. Roughly speaking, this question asks for the maximum number of vertices needed to cover all the edges of a hypergraph HH if it is known that any collection of a few edges of HH has a small cover. We obtain quite accurate bounds for the hypergraph problem and use them to give some unexpected answers to several questions about covering graphs by monochromatic trees raised and studied by Bal and DeBiasio, Kohayakawa, Mota and Schacht, Lang and Lo, and Gir\~ao, Letzter and Sahasrabudhe.Comment: 20 pages including references plus 2 pages of an Appendi
    • …
    corecore