32,047 research outputs found
Technical Development of a New Semispherical Radiofrequency Bipolar Device (RONJA): Ex Vivo and In Vivo Studies
The aim of this study is to inform about the development of a new semispherical surgical instrument for the bipolar multielectrode radiofrequency liver ablation. Present tools are universal; however they have several disadvantages such as ablation of healthy tissue, numerous needle punctures, and, therefore, longer operating procedure. Our newly designed and tested semispherical surgical tool can solve some of these disadvantages. By conducting an in vivo study on a set of 12 pigs, randomly divided into two groups, we have compared efficiency of the newly developed instrument with the commonly used device. Statistical analysis showed that there were no significant differences between the groups. On average, the tested instrument RONJA had shorter ablation time in both liver lobes and reduced the total operating time. The depth of the thermal alteration was on average 4 mm larger using the newly tested instrument. The new radiofrequency method described in this study could be used in open liver surgery for the treatment of small liver malignancies (up to 2 cm) in a single application with the aim of saving healthy liver parenchyma. Further experimental studies are needed to confirm these results before clinical application of the method in the treatment of human liver malignancies
Treatment of metastatic spinal lesions with a navigational bipolar radiofrequency ablation device: A multicenter retrospective study
2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias
Transurethral radiofrequency collagen denaturation for the treatment of women with urinary incontinence
Peer reviewedPublisher PD
A totally laparoscopic associating liver partition and portal vein ligation for staged hepatectomy assisted with radiofrequency (radiofrequency assisted liver partition with portal vein ligation) for staged liver resection
In order to induce liver hypertrophy to enable liver resection in patients with a small future liver remnant, various methods have been proposed in addition to portal vein embolisation. Most recently, the ALPPS technique has gained significant international interest. This technique is limited by the high morbidity associated with an in-situ liver splitting and the patient undergoing two open operations. We present the case of a variant ALPPS technique performed entirely laparoscopically with no major morbidity or mortality. An increased liver volume of 57.9% was seen after 14 days. This technique is feasible to perform and compares favourably to other ALPPS methods whilst gaining the advantages of laparoscopic surgery
Surgical technique for arthroscopic onlay suprapectoral biceps tenodesis with an all-suture anchor.
The long head of the biceps is a frequent pain generator in the shoulder. Tendinopathy of the long head of the biceps may be treated with biceps tenodesis. There has been great debate about the optimal technique for biceps tenodesis, without a clear distinction between different techniques. Biceps tenodesis fixation may include interference fixation, suspensory fixation, all-suture anchors, and soft tissue fixation. In this technical note, we describe an all-arthroscopic onlay suprapectoral biceps tenodesis with an all-suture anchor
Combined ablation and radiation therapy of spinal metastases: A novel multimodality treatment approach
Test results for 20-GHz GaAs FET spacecraft power amplifier
Test were conducted to measure the performance of the 20-GHz solid state, proof-of-concept amplifier. The amplifier operates over the 17.7 to 20.2-GHz frequency range and uses high power gallium arsenide field effect transistors. The amplifier design and test methods are briefly described. NASA and contractor performance data are compared
Expanding the use of real-time electromagnetic tracking in radiation oncology.
In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery
- …
