303 research outputs found
H alpha observations of the 12 August 1975 type 3-RS bursts
H alpha filtergram observations of a number of the Type III-RS (reverse slope) bursts that occurred on August 12, 1975 are presented. Solar radio emission was peculiar on that date in that a large number, and proportion, of the usually rare reverse slope bursts were observed. The radio bursts are shown to coincide in time with a homologous set of H alpha flares located at the limbward edge of spot group Mt. Wilson 19598. A model is proposed in which the reverse slope bursts are the downward branches of U bursts, whose upward branches are hidden behind the coronal density enhancement over the spot group
Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation
We describe a method to measure the magnetic field orientation of coronal
mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles,
Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are
produced by a radio source occulted by a moving flux rope depending on its
orientation. These curves are consistent with the Helios observations,
providing evidence for the flux-rope geometry of CMEs. Many background radio
sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope
that the magnetic field orientation and helicity of the flux rope can be
determined 2-3 days before it reaches Earth, which is of crucial importance for
space weather forecasting. An FR calculation based on global
magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows
that FR mapping can also resolve a CME geometry curved back to the Sun. We
discuss implementation of the method using data from the Mileura Widefield
Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.
Variability in the high energy gamma ray emission from Cyg X-3 over a two-year period (1983 - 1984) at E 4 x 10(11) eV
Cygnus X-3 is observed to emit gamma rays with energies in excess of 4 x 10 to the 11th power eV during two out of 9 observational categories over an 18 month time span. The emissions are observed at the 0.6 phase of the characteristic 4.8 hr light curve for this binary system. We estimate a peak flux at phase 0.6 of 5 x 10 to the minus 10th power photons cm-2s-1 at a software threshold of 8 x 10 to the 11th power eV for Oct/Nov 1983. A flux for the June 84 effect cannot be reliably calculated at present due to lack of Monte Carlo simulations for the energy range and spectral region. For the other 7 observational categories the observations are consistent with zero source emission. The light curve would appear to be variable on a time scale of a couple of weeks at these categories. Selection of compact images in accordance with Monte Carlo simulations combined with empirical optimization techniques have led to an enriched gamma ray light curve for the Oct/Nov 1983 data. Selection on the basis of shower orientation, however, has not led to any notable enhancement of the gamma ray content. Individual Cherenko images can be reliably sorted on an event by event basis into either proton-induced or photon-induced showers
A Faraday Rotation Search for Magnetic Fields in Large Scale Structure
Faraday rotation of radio source polarization provides a measure of the
integrated magnetic field along the observational lines of sight. We compare a
new, large sample of Faraday rotation measures (RMs) of polarized extragalactic
sources with galaxy counts in Hercules and Perseus-Pisces, two nearby
superclusters. We find that the average of RMs in these two supercluster areas
are larger than in control areas in the same galactic latitude range. This is
the first RM detection of magnetic fields that pervade a supercluster volume,
in which case the fields are at least partially coherent over several
megaparsecs. Even the most conservative interpretation of our observations,
according to which Milky Way RM variations mimic the background supercluster
galaxy overdensities, puts constraints on the IGM magneto-ionic ``strength'' in
these two superclusters. We obtain an approximate typical upper limit on the
field strength of about 0.3 microGauss l/(500 kpc), when we combine our RM data
with fiducial estimates of electron density from the environments of giant
radio galaxies, and of the warm-hot intergalactic medium (WHIM).Comment: 8 pages, 3 figures, 1 table, to appear in the Astrophysical Journa
Voyager radio occultation investigations at Saturn
Voyager will use dual-frequency 3.5 and 13 cm wavelength radio occultation techniques to study the atmospheres and ionospheres of Saturn and Titan, and the rings of Saturn. At Titan radio occultation is predicted to probe the atmosphere to the surface. The existence of a surface could be confirmed by detection of an obliquely scattered echo. At Saturn the two Voyager encounters will provide occultation measurements of temperate and equatorial regions of the atmosphere and ionosphere, and of the rings. The atmosphere will also be probed in polar regions during the deepest portions of the occultation. Both frequency and intensity data will be collected and jointly analyzed to study temperature-pressure profiles, and to derive information on atmospheric shape, turbulence, and weather. For the rings, Voyager will provide measurements of the complex (amplitude and phase) radio extinction and angular scattering functions of the ring particles as a function of wavelength, polarization, and radial distance from Saturn
Discovery of extreme particle acceleration in the microquasar Cygnus X-3
The study of relativistic particle acceleration is a major topic of
high-energy astrophysics. It is well known that massive black holes in active
galaxies can release a substantial fraction of their accretion power into
energetic particles, producing gamma-rays and relativistic jets. Galactic
microquasars (hosting a compact star of 1-10 solar masses which accretes matter
from a binary companion) also produce relativistic jets. However, no direct
evidence of particle acceleration above GeV energies has ever been obtained in
microquasar ejections, leaving open the issue of the occurrence and timing of
extreme matter energization during jet formation. Here we report the detection
of transient gamma-ray emission above 100 MeV from the microquasar Cygnus X-3,
an exceptional X-ray binary which sporadically produces powerful radio jets.
Four gamma-ray flares (each lasting 1-2 days) were detected by the AGILE
satellite simultaneously with special spectral states of Cygnus X-3 during the
period mid-2007/mid-2009. Our observations show that very efficient particle
acceleration and gamma-ray propagation out of the inner disk of a microquasar
usually occur a few days before major relativistic jet ejections. Flaring
particle energies can be thousands of times larger than previously detected
maximum values (with Lorentz factors of 105 and 102 for electrons and protons,
respectively). We show that the transitional nature of gamma-ray flares and
particle acceleration above GeV energies in Cygnus X-3 is clearly linked to
special radio/X-ray states preceding strong radio flares. Thus gamma-rays
provide unique insight into the nature of physical processes in microquasars.Comment: 29 pages (including Supplementary Information), 8 figures, 2 tables
version submitted to Nature on August 7, 2009 (accepted version available at
http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature08578.pdf
- …
